A B C D F G H I K L M N O P Q R S T U V W X misc
fda.usc-package | Functional Data Analysis and Utilities for Statistical Computing (fda.usc) |
accuracy | Performance measures for regression and classification models |
Adot | PCvM statistic for the Functional Linear Model with scalar response |
aemet | aemet data |
AKer.cos | Asymmetric Smoothing Kernel |
AKer.epa | Asymmetric Smoothing Kernel |
AKer.norm | Asymmetric Smoothing Kernel |
AKer.quar | Asymmetric Smoothing Kernel |
AKer.tri | Asymmetric Smoothing Kernel |
AKer.unif | Asymmetric Smoothing Kernel |
anova.hetero | ANOVA for heteroscedastic data |
anova.onefactor | One-way anova model for functional data |
anova.RPm | Functional ANOVA with Random Project. |
anyNA.fdata | fda.usc internal functions |
argvals | fda.usc internal functions |
argvals.equi | fda.usc internal functions |
bcdcor.dist | Distance Correlation Statistic and t-Test |
c.fdata | fda.usc internal functions |
c.ldata | ldata class definition and utilities |
c.mfdata | mfdata class definition and utilities |
cat2meas | Performance measures for regression and classification models |
classif.cv.glmnet | Functional classification using ML algotithms |
classif.DD | DD-Classifier Based on DD-plot |
classif.depth | Classifier from Functional Data |
classif.gbm | Functional classification using ML algotithms |
classif.gkam | Classification Fitting Functional Generalized Kernel Additive Models |
classif.glm | Classification Fitting Functional Generalized Linear Models |
classif.gsam | Classification Fitting Functional Generalized Additive Models |
classif.gsam.vs | Variable Selection in Functional Data Classification |
classif.kernel | Kernel Classifier from Functional Data |
classif.kfold | Functional Classification usign k-fold CV |
classif.knn | Kernel Classifier from Functional Data |
classif.ksvm | Functional classification using ML algotithms |
classif.lda | Functional classification using ML algotithms |
classif.ML | Functional classification using ML algotithms |
classif.multinom | Functional classification using ML algotithms |
classif.naiveBayes | Functional classification using ML algotithms |
classif.nnet | Functional classification using ML algotithms |
classif.np | Kernel Classifier from Functional Data |
classif.qda | Functional classification using ML algotithms |
classif.randomForest | Functional classification using ML algotithms |
classif.rpart | Functional classification using ML algotithms |
classif.svm | Functional classification using ML algotithms |
colnames.fdata | fda.usc internal functions |
cond.F | Conditional Distribution Function |
cond.mode | Conditional mode |
cond.quantile | Conditional quantile |
count.na.fdata | fda.usc internal functions |
cov.test.fdata | Tests for checking the equality of means and/or covariance between two populations under gaussianity. |
create.fdata.basis | Create Basis Set for Functional Data of fdata class |
create.pc.basis | Create Basis Set for Functional Data of fdata class |
create.pls.basis | Create Basis Set for Functional Data of fdata class |
create.raw.fdata | Create Basis Set for Functional Data of fdata class |
CV.S | The cross-validation (CV) score |
dcor.dist | Distance Correlation Statistic and t-Test |
dcor.test | Distance Correlation Statistic and t-Test |
dcor.xy | Distance Correlation Statistic and t-Test |
Depth | Computation of depth measures for functional data |
depth.fdata | Computation of depth measures for functional data |
depth.FM | Computation of depth measures for functional data |
depth.FMp | Provides the depth measure for a list of p-functional data objects |
depth.FSD | Computation of depth measures for functional data |
depth.KFSD | Computation of depth measures for functional data |
depth.mdata | Provides the depth measure for multivariate data |
depth.mfdata | Provides the depth measure for a list of p-functional data objects |
depth.mode | Computation of depth measures for functional data |
depth.modep | Provides the depth measure for a list of p-functional data objects |
Depth.Multivariate | Provides the depth measure for multivariate data |
depth.RP | Computation of depth measures for functional data |
depth.RPD | Computation of depth measures for functional data |
depth.RPp | Provides the depth measure for a list of p-functional data objects |
depth.RT | Computation of depth measures for functional data |
Descriptive | Descriptive measures for functional data. |
dev.S | The deviance score |
dfv.statistic | Delsol, Ferraty and Vieu test for no functional-scalar interaction |
dfv.test | Delsol, Ferraty and Vieu test for no functional-scalar interaction |
dim.fdata | fda.usc internal functions |
dis.cos.cor | Proximities between functional data |
fanova.hetero | ANOVA for heteroscedastic data |
fanova.onefactor | One-way anova model for functional data |
fanova.RPm | Functional ANOVA with Random Project. |
fda.usc | Functional Data Analysis and Utilities for Statistical Computing (fda.usc) |
fda.usc.internal | fda.usc internal functions |
fdata | Converts raw data or other functional data classes into fdata class. |
fdata.bootstrap | Bootstrap samples of a functional statistic |
fdata.bootstrap2 | Bootstrap samples of a functional statistic |
fdata.cen | Functional data centred (subtract the mean of each discretization point) |
fdata.deriv | Computes the derivative of functional data object. |
fdata.methods | fdata S3 Group Generic Functions |
fdata.trace | fda.usc internal functions |
fdata2basis | Compute fucntional coefficients from functional data represented in a base of functions |
fdata2fd | Converts fdata class object into fd class object |
fdata2pc | Principal components for functional data |
fdata2pls | Partial least squares components for functional data. |
FDR | False Discorvery Rate (FDR) |
fEqDistrib.test | Tests for checking the equality of distributions between two functional populations. |
fEqMoments.test | Tests for checking the equality of means and/or covariance between two populations under gaussianity. |
flm.Ftest | F-test for the Functional Linear Model with scalar response |
flm.test | Goodness-of-fit test for the Functional Linear Model with scalar response |
fmean.test.fdata | Tests for checking the equality of means and/or covariance between two populations under gaussianity. |
fregre.basis | Functional Regression with scalar response using basis representation. |
fregre.basis.cv | Cross-validation Functional Regression with scalar response using basis representation. |
fregre.basis.fr | Functional Regression with functional response using basis representation. |
fregre.bootstrap | Bootstrap regression |
fregre.bootstrap2 | Bootstrap regression |
fregre.gkam | Fitting Functional Generalized Kernel Additive Models. |
fregre.glm | Fitting Functional Generalized Linear Models |
fregre.glm.vs | Variable Selection using Functional Linear Models |
fregre.gls | Fit Functional Linear Model Using Generalized Least Squares |
fregre.gsam | Fitting Functional Generalized Spectral Additive Models |
fregre.gsam.vs | Variable Selection using Functional Additive Models |
fregre.igls | Fit of Functional Generalized Least Squares Model Iteratively |
fregre.lm | Fitting Functional Linear Models |
fregre.np | Functional regression with scalar response using non-parametric kernel estimation |
fregre.np.cv | Cross-validation functional regression with scalar response using kernel estimation. |
fregre.pc | Functional Regression with scalar response using Principal Components Analysis |
fregre.pc.cv | Functional penalized PC regression with scalar response using selection of number of PC components |
fregre.plm | Semi-functional partially linear model with scalar response. |
fregre.pls | Functional Penalized PLS regression with scalar response |
fregre.pls.cv | Functional penalized PLS regression with scalar response using selection of number of PLS components |
Ftest.statistic | F-test for the Functional Linear Model with scalar response |
func.mean | Descriptive measures for functional data. |
func.mean.formula | Descriptive measures for functional data. |
func.med.FM | Descriptive measures for functional data. |
func.med.mode | Descriptive measures for functional data. |
func.med.RP | Descriptive measures for functional data. |
func.med.RPD | Descriptive measures for functional data. |
func.med.RT | Descriptive measures for functional data. |
func.trim.FM | Descriptive measures for functional data. |
func.trim.mode | Descriptive measures for functional data. |
func.trim.RP | Descriptive measures for functional data. |
func.trim.RPD | Descriptive measures for functional data. |
func.trim.RT | Descriptive measures for functional data. |
func.trimvar.FM | Descriptive measures for functional data. |
func.trimvar.mode | Descriptive measures for functional data. |
func.trimvar.RP | Descriptive measures for functional data. |
func.trimvar.RPD | Descriptive measures for functional data. |
func.trimvar.RT | Descriptive measures for functional data. |
func.var | Descriptive measures for functional data. |
GCCV.S | The generalized correlated cross-validation (GCCV) score. |
GCV.S | The generalized correlated cross-validation (GCCV) score |
gridfdata | Utils for generate functional data |
h.default | Calculation of the smoothing parameter (h) for a functional data |
IKer.cos | Integrate Smoothing Kernels. |
IKer.epa | Integrate Smoothing Kernels. |
IKer.norm | Integrate Smoothing Kernels. |
IKer.quar | Integrate Smoothing Kernels. |
IKer.tri | Integrate Smoothing Kernels. |
IKer.unif | Integrate Smoothing Kernels. |
influence.fregre.fd | Functional influence measures |
influence_quan | Quantile for influence measures |
inprod.fdata | Inner products of Functional Data Objects o class (fdata) |
int.simpson | Simpson integration |
int.simpson2 | Simpson integration |
is.fdata | fdata S3 Group Generic Functions |
is.ldata | ldata class definition and utilities |
is.mfdata | mfdata class definition and utilities |
is.na.fdata | fda.usc internal functions |
Ker.cos | Symmetric Smoothing Kernels. |
Ker.epa | Symmetric Smoothing Kernels. |
Ker.norm | Symmetric Smoothing Kernels. |
Ker.quar | Symmetric Smoothing Kernels. |
Ker.tri | Symmetric Smoothing Kernels. |
Ker.unif | Symmetric Smoothing Kernels. |
Kernel | Symmetric Smoothing Kernels. |
Kernel.asymmetric | Asymmetric Smoothing Kernel |
Kernel.integrate | Integrate Smoothing Kernels. |
kmeans.center.ini | K-Means Clustering for functional data |
kmeans.fd | K-Means Clustering for functional data |
ldata | ldata class definition and utilities |
ldata.cen | ldata class definition and utilities |
length.fdata | fda.usc internal functions |
lines.fdata | Plot functional data: fdata class object |
LMDC.regre | Impact points selection of functional predictor and regression using local maxima distance correlation (LMDC) |
LMDC.select | Impact points selection of functional predictor and regression using local maxima distance correlation (LMDC) |
Math.fdata | fdata S3 Group Generic Functions |
Math.ldata | ldata class definition and utilities |
Math.mfdata | mfdata class definition and utilities |
MCO | Mithochondiral calcium overload (MCO) data set |
mdepth.FM | Provides the depth measure for multivariate data |
mdepth.FSD | Provides the depth measure for multivariate data |
mdepth.HS | Provides the depth measure for multivariate data |
mdepth.KFSD | Provides the depth measure for multivariate data |
mdepth.LD | Provides the depth measure for multivariate data |
mdepth.MhD | Provides the depth measure for multivariate data |
mdepth.RP | Provides the depth measure for multivariate data |
mdepth.SD | Provides the depth measure for multivariate data |
mdepth.TD | Provides the depth measure for multivariate data |
mean.fdata | ldata class definition and utilities |
mean.ldata | ldata class definition and utilities |
mean.mfdata | mfdata class definition and utilities |
metric.dist | Distance Matrix Computation |
metric.DTW | DTW: Dynamic time warping |
metric.hausdorff | Compute the Hausdorff distances between two curves. |
metric.kl | Kullback-Leibler distance |
metric.ldata | Distance Matrix Computation for ldata and mfdata class object |
metric.lp | Approximates Lp-metric distances for functional data. |
metric.mfdata | Distance Matrix Computation for ldata and mfdata class object |
metric.TWED | DTW: Dynamic time warping |
metric.WDTW | DTW: Dynamic time warping |
mfdata | mfdata class definition and utilities |
mfdata.cen | mfdata class definition and utilities |
min.basis | Select the number of basis using GCV method. |
min.np | Smoothing of functional data using nonparametric kernel estimation |
missing.fdata | fda.usc internal functions |
MMD.test | Tests for checking the equality of distributions between two functional populations. |
MMDA.test | Tests for checking the equality of distributions between two functional populations. |
na.fail.fdata | A wrapper for the na.omit and na.fail function for fdata object |
na.omit.fdata | A wrapper for the na.omit and na.fail function for fdata object |
names.ldata | ldata class definition and utilities |
names.mfdata | mfdata class definition and utilities |
NCOL.fdata | fda.usc internal functions |
ncol.fdata | fda.usc internal functions |
NCOL.ldata | ldata class definition and utilities |
ncol.ldata | ldata class definition and utilities |
NCOL.mfdata | mfdata class definition and utilities |
ncol.mfdata | mfdata class definition and utilities |
norm.fd | Approximates Lp-norm for functional data. |
norm.fdata | Approximates Lp-norm for functional data. |
NROW.fdata | fda.usc internal functions |
nrow.fdata | fda.usc internal functions |
NROW.ldata | ldata class definition and utilities |
nrow.ldata | ldata class definition and utilities |
NROW.mfdata | mfdata class definition and utilities |
nrow.mfdata | mfdata class definition and utilities |
omit.fdata | fda.usc internal functions |
omit2.fdata | fda.usc internal functions |
ops.fda.usc | ops.fda.usc Options Settings |
Ops.fdata | fdata S3 Group Generic Functions |
Ops.ldata | ldata class definition and utilities |
Ops.mfdata | mfdata class definition and utilities |
optim.basis | Select the number of basis using GCV method. |
optim.np | Smoothing of functional data using nonparametric kernel estimation |
order.fdata | fdata S3 Group Generic Functions |
outliers.depth.pond | outliers for functional dataset |
outliers.depth.trim | outliers for functional dataset |
Outliers.fdata | outliers for functional dataset |
outliers.lrt | outliers for functional dataset |
outliers.thres.lrt | outliers for functional dataset |
P.penalty | Penalty matrix for higher order differences |
PCvM.statistic | PCvM statistic for the Functional Linear Model with scalar response |
phoneme | phoneme data |
plot.bifd | Plot functional data: fdata class object |
plot.depth | Plot functional data: fdata class object |
plot.fdata | Plot functional data: fdata class object |
plot.ldata | ldata class definition and utilities |
plot.mdepth | Plot functional data: fdata class object |
plot.mfdata | mfdata class definition and utilities |
plot.summary.lm | Summarizes information from fregre.fd objects. |
poblenou | poblenou data |
pred.MAE | Performance measures for regression and classification models |
pred.MSE | Performance measures for regression and classification models |
pred.RMSE | Performance measures for regression and classification models |
pred2meas | Performance measures for regression and classification models |
pred2meas. | Performance measures for regression and classification models |
predict.classif | Predicts from a fitted classif object. |
predict.classif.DD | Predicts from a fitted classif.DD object. |
predict.fregre.fd | Predict method for functional linear model (fregre.fd class) |
predict.fregre.fr | Predict method for functional response model |
predict.fregre.gkam | Predict method for functional linear model |
predict.fregre.glm | Predict method for functional linear model |
predict.fregre.gls | Predictions from a functional gls object |
predict.fregre.gsam | Predict method for functional linear model |
predict.fregre.igls | Predictions from a functional gls object |
predict.fregre.lm | Predict method for functional linear model |
predict.fregre.plm | Predict method for functional linear model |
print.classif | Summarizes information from kernel classification methods. |
print.fregre.fd | Summarizes information from fregre.fd objects. |
print.fregre.gkam | Summarizes information from fregre.gkam objects. |
print.fregre.igls | Summarizes information from fregre.fd objects. |
print.fregre.plm | Summarizes information from fregre.fd objects. |
pvalue.FDR | False Discorvery Rate (FDR) |
quantile.outliers.pond | outliers for functional dataset |
quantile.outliers.trim | outliers for functional dataset |
r.ou | Ornstein-Uhlenbeck process |
rangeval | fda.usc internal functions |
rcombfdata | Utils for generate functional data |
rdir.pc | Data-driven sampling of random directions guided by sample of functional data |
rownames.fdata | fda.usc internal functions |
rp.flm.statistic | Statistics for testing the functional linear model using random projections |
rp.flm.test | Goodness-of fit test for the functional linear model using random projections |
rproc2fdata | Simulate several random processes. |
rwild | Wild bootstrap residuals |
S.basis | Smoothing matrix with roughness penalties by basis representation. |
S.KNN | Smoothing matrix by nonparametric methods |
S.LCR | Smoothing matrix by nonparametric methods |
S.LLR | Smoothing matrix by nonparametric methods |
S.LPR | Smoothing matrix by nonparametric methods |
S.np | Smoothing matrix by nonparametric methods |
S.NW | Smoothing matrix by nonparametric methods |
semimetric.basis | Proximities between functional data |
semimetric.deriv | Proximities between functional data (semi-metrics) |
semimetric.fourier | Proximities between functional data (semi-metrics) |
semimetric.hshift | Proximities between functional data (semi-metrics) |
semimetric.mplsr | Proximities between functional data (semi-metrics) |
semimetric.NPFDA | Proximities between functional data (semi-metrics) |
semimetric.pca | Proximities between functional data (semi-metrics) |
split.fdata | fdata S3 Group Generic Functions |
subset.fdata | Subsetting |
subset.ldata | ldata class definition and utilities |
subset.mfdata | mfdata class definition and utilities |
summary.basis.fdata | Compute fucntional coefficients from functional data represented in a base of functions |
summary.classif | Summarizes information from kernel classification methods. |
summary.fanova.RPm | Functional ANOVA with Random Project. |
Summary.fdata | fdata S3 Group Generic Functions |
summary.fdata.comp | Correlation for functional data by Principal Component Analysis |
summary.fregre.fd | Summarizes information from fregre.fd objects. |
summary.fregre.gkam | Summarizes information from fregre.gkam objects. |
summary.fregre.igls | Summarizes information from fregre.fd objects. |
summary.fregre.lm | Summarizes information from fregre.fd objects. |
Summary.ldata | ldata class definition and utilities |
Summary.mfdata | mfdata class definition and utilities |
tab2meas | Performance measures for regression and classification models |
tecator | tecator data |
title.fdata | Plot functional data: fdata class object |
trace.matrix | fda.usc internal functions |
unlist_fdata | fda.usc internal functions |
Var.e | Sampling Variance estimates |
Var.y | Sampling Variance estimates |
weights4class | Weighting tools |
XYRP.test | Tests for checking the equality of distributions between two functional populations. |
!=.fdata | fda.usc internal functions |
*.fdata | fda.usc internal functions |
+.fdata | fda.usc internal functions |
-.fdata | fda.usc internal functions |
/.fdata | fda.usc internal functions |
==.fdata | fda.usc internal functions |
[.fdata | fda.usc internal functions |
[.fdist | fda.usc internal functions |
[.ldata | ldata class definition and utilities |
[.mfdata | mfdata class definition and utilities |
^.fdata | fda.usc internal functions |