dev.S {fda.usc} | R Documentation |
The deviance score
Description
Returns the deviance of a fitted model object by GCV score.
Usage
dev.S(
y,
S,
obs,
family = gaussian(),
off,
offdf,
criteria = "GCV",
W = diag(1, ncol = ncol(S), nrow = nrow(S)),
trim = 0,
draw = FALSE,
...
)
Arguments
y |
Matrix of set cases with dimension ( |
S |
Smoothing matrix. |
obs |
observed response. |
family |
a description of the error distribution and link function to
be used in the model. This can be a character string naming a family
function, a family function or the result of a call to a family function.
(See |
off |
off |
offdf |
off, degrees of freedom |
criteria |
The penalizing function. By default "Rice" criteria. Possible values are "GCV", "AIC", "FPE", "Shibata", "Rice". |
W |
Matrix of weights. |
trim |
The alpha of the trimming. |
draw |
=TRUE, draw the curves, the sample median and trimmed mean. |
... |
Further arguments passed to or from other methods. |
Details
Up to a constant, minus twice the maximized log-likelihood. Where sensible, the constant is chosen so that a saturated model has deviance zero.
GCV(h)=p(h) \Xi(n^{-1}h^{-1})
Where
p(h)=\frac{1}{n}
\sum_{i=1}^{n}{\Big(y_i-r_{i}(x_i)\Big)^{2}w(x_i)}
and penalty
function
\Xi()
can be selected from the following criteria:
Generalized Cross-validation (GCV):
\Xi_{GCV}(n^{-1}h^{-1})=(1-n^{-1}S_{ii})^{-2}
Akaike's
Information Criterion (AIC):
\Xi_{AIC}(n^{-1}h^{-1})=exp(2n^{-1}S_{ii})
Finite Prediction Error (FPE)
\Xi_{FPE}(n^{-1}h^{-1})=\frac{(1+n^{-1}S_{ii})}{(1-n^{-1}S_{ii})}
Shibata's model selector (Shibata):
\Xi_{Shibata}(n^{-1}h^{-1})=(1+2n^{-1}S_{ii})
Rice's bandwidth selector (Rice):
\Xi_{Rice}(n^{-1}h^{-1})=(1-2n^{-1}S_{ii})^{-1}
Value
Returns GCV score calculated for input parameters.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Wasserman, L. All of Nonparametric Statistics. Springer Texts in Statistics, 2006.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See Also as GCV.S
.
Alternative method:
CV.S
Examples
data(phoneme)
mlearn<-phoneme$learn
np<-ncol(mlearn)
tt<-mlearn[["argvals"]]
S1 <- S.NW(tt,2.5)
gcv1 <- dev.S(mlearn$data[1,],obs=(sample(150)),
S1,off=rep(1,150),offdf=3)
gcv2 <- dev.S(mlearn$data[1,],obs=sort(sample(150)),
S1,off=rep(1,150),offdf=3)