depth.mfdata {fda.usc} | R Documentation |
Provides the depth measure for a list of p–functional data objects
Description
This function computes the depth measure for a list of p–functional data objects. The procedure extends the Fraiman and Muniz (FM), modal, and random project depth functions from 1 functional dataset to p functional datasets.
Usage
depth.modep(
mfdata,
mfdataref = mfdata,
h = NULL,
metric,
par.metric = list(),
method = "euclidean",
scale = FALSE,
trim = 0.25,
draw = FALSE,
ask = FALSE
)
depth.RPp(
mfdata,
mfdataref = mfdata,
nproj = 50,
proj = "vexponential",
trim = 0.25,
dfunc = "mdepth.TD",
par.dfunc = list(scale = TRUE),
draw = FALSE,
ask = FALSE
)
depth.FMp(
mfdata,
mfdataref = mfdata,
trim = 0.25,
dfunc = "mdepth.MhD",
par.dfunc = list(scale = FALSE),
draw = FALSE,
ask = FALSE,
...
)
Arguments
mfdata |
A list of new curves (list of fdata ojects) to evaluate the depth. |
mfdataref |
A set of reference curves (list of fdata ojects) w.r.t. the depth of mfdata is computed. |
h |
Bandwidth, |
metric |
Metric or semi–metric function used for compute the distance
between each element in |
par.metric |
list of parameters for the metric function. |
method |
Type of the distance measure (by default |
scale |
=TRUE, scale the depth. |
trim |
The alpha of the trimming. |
draw |
=TRUE, draw the curves, the sample median and trimmed mean. |
ask |
logical. If |
nproj |
The number projection. |
proj |
if is a character: create the random projection using a covariance matrix by process indicated in the argument (by default, proj=1, sigma=diag(ncol(fdataobj))), else if is a matrix of random projection provided by the user. |
dfunc |
Type of multivariate depth (of order p) function used in
Framiman and Muniz depth,
|
par.dfunc |
list of parameters for the |
... |
Further arguments passed to or from other methods. |
Details
-
depth.FMp
, this procedure suposes that each curve of the mfdataobj have the same support [0,T] (same argvals and rangeval). The FMp depth is defined as:FM_i^p =\int_{0}^{T}Z_i^p(t)dt
whereZ_i^p(t)
is ap
–variate depth of the vector(x_i^1(t),\ldots,x_i^p(t))
w.r.t. the sample att
. derivatives. In this case,note solo un dato funcional se reduce depth.FM=depth.FM1 The
depth.RPp
function calculates the depth in two steps. It builds random projections for the each curve of themfdata
w.r.t. each curve of themfdataref
object. Then it applyes a multivariate depth function specified indfunc
argument to the set of random projections. This procedure is a generalization of Random Projection with derivatives (RPD) implemented indepth.RPD
function. Now, the procedure computes a p-variate depth with the projections using thep
functional dataset.The modal depth
depth.modep
function calculates the depth in three steps. First, the function calculates a suitable metrics or semi–metricsm_1+\cdots+m_p
for each curve of themfdata
w.r.t. each curve in themfdataref
object using themetric
andpar.metric
arguments, seemetric.lp
orsemimetric.NPFDA
for more details. Second, the function uses thep
–dimensional metrics to construct a new metric, specified inmethod
argument, by default ifmethod="euclidean"
, i.e.m:=\sqrt{m_1^2+\cdots+m_p^2}
. Finally, the empirical h–depth is computed as:\hat{f}_h(x_0)=N^{-1}\sum_{i=1}^{N}{K(m/h)}
where
x
is dataset with p observed fucntional data,m
is a suitable metric or semi–metric,K(t)
is an asymmetric kernel function andh
is the bandwidth parameter.
Value
-
lmed Index deepest element
median
. -
ltrim Index of curves with trimmed mean
mtrim
. -
dep Depth of each curve of fdataobj w.r.t. fdataori.
-
dfunc second depth function used as multivariate depth, see details section.
-
par.dfunc list of parameters for the dfunc depth function.
-
proj The projection value of each point on the curves.
-
dist Distance matrix between curves or functional data.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Cuevas, A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3, 481-496. 10: 419-440. Statistical Computing in Functional Data Analysis: The R Package fda.usc.Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See Also as Descriptive
.
Examples
## Not run:
data(tecator)
xx<-tecator$absorp
xx1<-fdata.deriv(xx,1)
lx<-list(xx=xx,xx=xx1)
# Fraiman-Muniz Depth
par.df<-list(scale =TRUE)
out.FM1p=depth.FMp(lx,trim=0.1,draw=TRUE, par.dfunc = par.df)
out.FM2p=depth.FMp(lx,trim=0.1,dfunc="mdepth.LD",
par.dfunc = par.df, draw=TRUE)
# Random Project Depth
out.RP1p=depth.RPp(lx,trim=0.1,dfunc="mdepth.TD",
draw=TRUE,par.dfunc = par.df)
out.RP2p=depth.RPp(lx,trim=0.1,dfunc="mdepth.LD",
draw=TRUE,par.dfunc = par.df)
#Modal Depth
out.mode1p=depth.modep(lx,trim=0.1,draw=T,scale=T)
out.mode2p=depth.modep(lx,trim=0.1,method="manhattan",
draw=T,scale=T)
par(mfrow=c(2,3))
plot(out.FM1p$dep,out.FM2p$dep)
plot(out.RP1p$dep,out.RP2p$dep)
plot(out.mode1p$dep,out.mode2p$dep)
plot(out.FM1p$dep,out.RP1p$dep)
plot(out.RP1p$dep,out.mode1p$dep)
plot(out.FM1p$dep,out.mode1p$dep)
## End(Not run)