fEqMoments.test {fda.usc} | R Documentation |
Tests for checking the equality of means and/or covariance between two populations under gaussianity.
Description
Two tests for the equality of means and covariances of two populations are provided. Both tests are constructed under gaussianity following Horvath & Kokoszka, 2012, Chapter 5.
Usage
fmean.test.fdata(
X.fdata,
Y.fdata,
method = c("X2", "Boot"),
npc = 5,
alpha = 0.95,
B = 1000,
draw = FALSE
)
cov.test.fdata(
X.fdata,
Y.fdata,
method = c("X2", "Boot"),
npc = 5,
alpha = 0.95,
B = 1000,
draw = FALSE
)
Arguments
X.fdata |
|
Y.fdata |
|
method |
c("X2","Boot"). "X2" includes the asymptotic distribution. "Boot" computes the bootstrap approximation. |
npc |
The number of principal components employed. If |
alpha |
Confidence level. By default =0.95. |
B |
Number of bootstrap replicas when method="Boot". |
draw |
By default, FALSE. Plots the density of the bootstrap replicas jointly with the statistic. |
Details
fmean.test.fdata
computes the test for equality of means.
cov.test.fdata
computes the test for equality of covariance operators.
Both tests have asymptotic distributions under the null related with chi-square distribution. Also, a
parametric bootstrap procedure is implemented in both cases.
Value
Return a list with:
-
stat Value of the statistic.
-
pvalue P-values for the test.
-
vcrit Critical cutoff for rejecting the null hypothesis.
-
p Degrees of freedom for X2 statistic.
-
B Number of bootstrap replicas.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.febrero@usc.es
References
Inference for Functional Data with Applications. Horvath, L and Kokoszka, P. (2012). Springer.
See Also
See Also as fanova.RPm, fanova.onefactor
.
Examples
## Not run:
tt=seq(0,1,len=51)
bet=0
mu1=fdata(10*tt*(1-tt)^(1+bet),tt)
mu2=fdata(10*tt^(1+bet)*(1-tt),tt)
fsig=1
X=rproc2fdata(100,tt,mu1,sigma="vexponential",par.list=list(scale=0.2,theta=0.35))
Y=rproc2fdata(100,tt,mu2,sigma="vexponential",par.list=list(scale=0.2*fsig,theta=0.35))
fmean.test.fdata(X,Y,npc=-.98,draw=TRUE)
cov.test.fdata(X,Y,npc=5,draw=TRUE)
bet=0.1
mu1=fdata(10*tt*(1-tt)^(1+bet),tt)
mu2=fdata(10*tt^(1+bet)*(1-tt),tt)
fsig=1.5
X=rproc2fdata(100,tt,mu1,sigma="vexponential",par.list=list(scale=0.2,theta=0.35))
Y=rproc2fdata(100,tt,mu2,sigma="vexponential",par.list=list(scale=0.2*fsig,theta=0.35))
fmean.test.fdata(X,Y,npc=-.98,draw=TRUE)
cov.test.fdata(X,Y,npc=5,draw=TRUE)
## End(Not run)