fdata.bootstrap {fda.usc} | R Documentation |
Bootstrap samples of a functional statistic
Description
provides bootstrap samples for functional data.
Usage
fdata.bootstrap(
fdataobj,
statistic = func.mean,
alpha = 0.05,
nb = 200,
smo = 0,
draw = FALSE,
draw.control = NULL,
...
)
Arguments
fdataobj |
|
statistic |
Sample statistic. It must be a function that returns an
object of class |
alpha |
Significance value. |
nb |
Number of bootstrap resamples. |
smo |
The smoothing parameter for the bootstrap samples as a proportion of the sample variance matrix. |
draw |
If |
draw.control |
List that it specifies the |
... |
Further arguments passed to or from other methods. |
Details
The fdata.bootstrap()
computes a confidence ball using bootstrap in
the following way:
Let
the original data and
the sample' statistic.
Calculate the
nb
bootstrap resamples, using the following scheme
where
is normally distributed with mean 0 and covariance matrix
, where
is the covariance matrix of'
and
is the smoothing parameter.
Let
the estimate using the
resample.
Compute
,
. Define the bootstrap confidence ball of level
as
such that
being
the quantile
of the distances between the bootstrap resamples and the sample estimate.
The fdata.bootstrap
function allows us to define a statistic
calculated on the nb
resamples, control the degree of smoothing by
smo
argument and represent the confidence ball with level
as those resamples that fulfill the condition of
belonging to
. The
statistic
used by
default is the mean (func.mean
) but also other depth-based
functions can be used (see help(Descriptive)
).
Value
statistic
fdata
class object with the statistic estimate fromnb
bootstrap samples.dband Bootstrap estimate of
(1-alpha)%
distance.rep.dist Distance from every replicate.
resamples
fdata
class object with the bootstrap resamples.fdataobj
fdata
class object.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Cuevas A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3: 481-496.
Cuevas A., Febrero-Bande, M., Fraiman R. 2006. On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis 51: 1063-1074.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See Also as Descriptive
Examples
## Not run:
data(tecator)
absorp<-tecator$absorp.fdata
# Time consuming
#Bootstrap for Trimmed Mean with depth mode
out.boot=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=200,draw=TRUE)
names(out.boot)
#Bootstrap for Median with with depth mode
control=list("col"=c("grey","blue","cyan"),"lty"=c(2,1,1),"lwd"=c(1,3,1))
out.boot=fdata.bootstrap(absorp,statistic=func.med.mode,
draw=TRUE,draw.control=control)
## End(Not run)