fdata.bootstrap {fda.usc} | R Documentation |
Bootstrap samples of a functional statistic
Description
provides bootstrap samples for functional data.
Usage
fdata.bootstrap(
fdataobj,
statistic = func.mean,
alpha = 0.05,
nb = 200,
smo = 0,
draw = FALSE,
draw.control = NULL,
...
)
Arguments
fdataobj |
|
statistic |
Sample statistic. It must be a function that returns an
object of class |
alpha |
Significance value. |
nb |
Number of bootstrap resamples. |
smo |
The smoothing parameter for the bootstrap samples as a proportion of the sample variance matrix. |
draw |
If |
draw.control |
List that it specifies the |
... |
Further arguments passed to or from other methods. |
Details
The fdata.bootstrap()
computes a confidence ball using bootstrap in
the following way:
Let
X_1(t),\ldots,X_n(t)
the original data andT=T(X_1(t),\ldots,X_n(t))
the sample' statistic.Calculate the
nb
bootstrap resamples\left\{X_{1}^{*}{(t)},\cdots,X_n^*(t)\right\}
, using the following schemeX_i^*(t)=X_i(t)+Z(t)
whereZ(t)
is normally distributed with mean 0 and covariance matrix\gamma\Sigma_x
, where\Sigma_x
is the covariance matrix of'\left\{X_1(t),\ldots,X_n(t)\right\}
and\gamma
is the smoothing parameter.Let
T^{*j}=T(X^{*j}_1(t),...,X^{*j}_n(t))
the estimate using thej
resample.Compute
d(T,T^{*j})
,j=1,\ldots,nb
. Define the bootstrap confidence ball of level1-\alpha
asCB(\alpha)=X\in E
such thatd(T,X)\leq d_{\alpha}
beingd_{\alpha}
the quantile(1-\alpha)
of the distances between the bootstrap resamples and the sample estimate.
The fdata.bootstrap
function allows us to define a statistic
calculated on the nb
resamples, control the degree of smoothing by
smo
argument and represent the confidence ball with level
1-\alpha
as those resamples that fulfill the condition of
belonging to CB(\alpha)
. The statistic
used by
default is the mean (func.mean
) but also other depth-based
functions can be used (see help(Descriptive)
).
Value
statistic
fdata
class object with the statistic estimate fromnb
bootstrap samples.dband Bootstrap estimate of
(1-alpha)%
distance.rep.dist Distance from every replicate.
resamples
fdata
class object with the bootstrap resamples.fdataobj
fdata
class object.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Cuevas A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3: 481-496.
Cuevas A., Febrero-Bande, M., Fraiman R. 2006. On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis 51: 1063-1074.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See Also as Descriptive
Examples
## Not run:
data(tecator)
absorp<-tecator$absorp.fdata
# Time consuming
#Bootstrap for Trimmed Mean with depth mode
out.boot=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=200,draw=TRUE)
names(out.boot)
#Bootstrap for Median with with depth mode
control=list("col"=c("grey","blue","cyan"),"lty"=c(2,1,1),"lwd"=c(1,3,1))
out.boot=fdata.bootstrap(absorp,statistic=func.med.mode,
draw=TRUE,draw.control=control)
## End(Not run)