influence.fregre.fd {fda.usc} | R Documentation |
Functional influence measures
Description
Once estimated the functional regression model with scalar response, influence.fregre.fd function is used to obtain the functional influence measures.
Usage
## S3 method for class 'fregre.fd'
influence(model, ...)
Arguments
model |
|
... |
Further arguments passed to or from other methods. |
Details
Identify influential observations in the functional linear model in which
the predictor is functional and the response is scalar.
Three statistics are introduced for measuring the influence: Distance Cook Prediction
DCP
, Distance Cook Estimation DCE
and Distance
\mbox{pe}\tilde{\mbox{n}}\mbox{a}
DP
respectively.
Value
Return:
-
DCP
Cook's Distance for Prediction. -
DCE
Cook's Distance for Estimation. -
DP
\mbox{Pe}\tilde{\mbox{n}}\mbox{a's}
Distance.
Note
influence.fdata deprecated.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Febrero-Bande, M., Galeano, P. and Gonzalez-Manteiga, W. (2010). Measures of influence for the functional linear model with scalar response. Journal of Multivariate Analysis 101, 327-339.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See Also as: fregre.pc
, fregre.basis
,
influence_quan
Examples
## Not run:
data(tecator)
x=tecator$absorp.fdata[1:129]
y=tecator$y$Fat[1:129]
res1=fregre.pc(x,y,1:5)
# time consuming
res.infl1=influence(res1)
res2=fregre.basis(x,y)
res.infl2=influence(res2)
res<-res1
res.infl<-res.infl1
mat=cbind(y,res$fitted.values,res.infl$DCP,res.infl$DCE,res.infl$DP)
colnames(mat)=c("Resp.","Pred.","DCP","DCE","DP")
pairs(mat)
## End(Not run)