GCV.S {fda.usc} | R Documentation |
The generalized correlated cross-validation (GCCV) score
Description
Compute the generalized correlated cross-validation (GCV) score.
Usage
GCV.S(
y,
S,
criteria = "GCV",
W = NULL,
trim = 0,
draw = FALSE,
metric = metric.lp,
...
)
Arguments
y |
Matrix of set cases with dimension ( |
S |
|
criteria |
The penalizing function. By default "Rice" criteria. Possible values are "GCCV1", "GCCV2", "GCCV3", "GCV". |
W |
Matrix of weights. |
trim |
The alpha of the trimming. |
draw |
=TRUE, draw the curves, the sample median and trimmed mean. |
metric |
Metric function, by default |
... |
Further arguments passed to or from other methods. |
Details
A.-If trim=0
:
GCCV=\frac{\sum_{i=1}^n {y_{i}-\hat{y}_{i,b}}^2}{1-\frac{tr(C)}{n}^2}
where S
is the smoothing matrix S
and:
A.-If C=2S\Sigma - S\Sigma S
B.-If C=S\Sigma
C.-If C=S\Sigma S'
with \Sigma
is the n x n covariance matrix with
cor(\epsilon_i,\epsilon_j ) =\sigma
Note: Provided that C = I
and the smoother matrix S is symmetric and idempotent, as is the case for many linear fitting techniques, the trace term reduces to n - tr[S]
, which is proportional to the familiar denominator in GCV.
Value
Returns GCV score calculated for input parameters.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Wasserman, L. All of Nonparametric Statistics. Springer Texts in Statistics, 2006. Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994. Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See Also as optim.np
Alternative method:
CV.S
Examples
## Not run:
data(phoneme)
mlearn<-phoneme$learn
tt<-1:ncol(mlearn)
S1 <- S.NW(tt,2.5)
S2 <- S.LLR(tt,2.5)
gcv1 <- GCV.S(mlearn, S1)
gcv2 <- GCV.S(mlearn, S2)
gcv3 <- GCV.S(mlearn, S1,criteria="AIC")
gcv4 <- GCV.S(mlearn, S2,criteria="AIC")
gcv1; gcv2; gcv3; gcv4
## End(Not run)