S.basis {fda.usc} | R Documentation |
Smoothing matrix with roughness penalties by basis representation.
Description
Provides the smoothing matrix S
with roughness penalties.
Usage
S.basis(tt, basis, lambda = 0, Lfdobj = vec2Lfd(c(0, 0)), w = NULL, ...)
Arguments
tt |
Discretization points. |
basis |
Basis to use. See create.basis. |
lambda |
A roughness penalty. By default, no penalty |
Lfdobj |
See eval.penalty. |
w |
Optional case weights. |
... |
Further arguments passed to or from other methods. Arguments to be passed by default to create.basis |
Details
Provides the smoothing matrix S for the discretization points tt
and
bbasis
with roughness penalties. If lambda=0
is not used
penalty, else a basis roughness penalty matrix is caluclated using
getbasispenalty.
Value
Return the smoothing matrix S
.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Ramsay, James O. and Silverman, Bernard W. (2006). Functional Data Analysis, 2nd ed., Springer, New York.
Wasserman, L. All of Nonparametric Statistics. Springer Texts in Statistics, 2006.
See Also
See Also as S.np
Examples
## Not run:
np=101
tt=seq(0,1,len=np)
nbasis=11
base1 <- create.bspline.basis(c(0, np), nbasis)
base2 <- create.fourier.basis(c(0, np), nbasis)
S1<-S.basis(tt,basis=base1,lambda=3)
image(S1)
S2<-S.basis(tt,basis=base2,lambda=3)
image(S2)
## End(Not run)