classif.depth {fda.usc} | R Documentation |
Classifier from Functional Data
Description
Classification of functional data using maximum depth.
Usage
classif.depth(
group,
fdataobj,
newfdataobj,
depth = "RP",
par.depth = list(),
CV = "none"
)
Arguments
group |
Factor of length n |
fdataobj |
|
newfdataobj |
|
depth |
Type of depth function from functional data:
|
par.depth |
List of parameters for |
CV |
=“none” |
Value
group.est Vector of classes of train sample data.
group.pred Vector of classes of test sample data.
prob.classification Probability of correct classification by group.
max.prob Highest probability of correct classification.
fdataobj
fdata
class object.group Factor of length n.
Author(s)
Febrero-Bande, M. and Oviedo de la Fuente, M.
References
Cuevas, A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3, 481-496.
Examples
## Not run:
data(phoneme)
mlearn<-phoneme[["learn"]]
mtest<-phoneme[["test"]]
glearn<-phoneme[["classlearn"]]
gtest<-phoneme[["classtest"]]
a1<-classif.depth(glearn,mlearn,depth="RP")
table(a1$group.est,glearn)
a2<-classif.depth(glearn,mlearn,depth="RP",CV=TRUE)
a3<-classif.depth(glearn,mlearn,depth="RP",CV=FALSE)
a4<-classif.depth(glearn,mlearn,mtest,"RP")
a5<-classif.depth(glearn,mlearn,mtest,"RP",CV=TRUE)
table(a5$group.est,glearn)
a6<-classif.depth(glearn,mlearn,mtest,"RP",CV=FALSE)
table(a6$group.est,glearn)
## End(Not run)