cond.F {fda.usc} | R Documentation |
Conditional Distribution Function
Description
Calculate the conditional distribution function of a scalar response with functional data.
Usage
cond.F(
fdata0,
y0,
fdataobj,
y,
h = 0.15,
g = 0.15,
metric = metric.lp,
Ker = list(AKer = AKer.epa, IKer = IKer.epa),
...
)
Arguments
fdata0 |
Conditional explanatory functional data of |
y0 |
Vector of conditional response with length |
fdataobj |
|
y |
Vector of scalar response with length |
h |
Smoothing parameter or bandwidth of response |
g |
Smoothing parameter or bandwidth of explanatory functional data
|
metric |
Metric function, by default |
Ker |
List of 2 arguments. The fist argument is a character string that
determines the type of asymetric kernel (see
|
... |
Further arguments passed to or from other methods. |
Details
If x.dist=NULL
the distance matrix between fdata
objects is
calculated by function passed in metric
argument.
Value
-
Fc Conditional distribution function.
-
y0 Vector of conditional response.
-
g Smoothing parameter or bandwidth of explanatory functional data (
fdataobj
). -
h Smoothing parameter or bandwidth of respone,
y
. -
x.dist Distance matrix between curves of
fdataobj
object. -
xy.dist Distance matrix between cuves of
fdataobj
andfdata0
objects.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
See Also
See Also as: cond.mode
and
cond.quantile
.
Examples
## Not run:
# Read data
n= 500
t= seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y=numeric(n)
x0<-rproc2fdata(n,seq(0,1,len=101),sigma="wiener")
x1<-rproc2fdata(n,seq(0,1,len=101),sigma=0.1)
x<-x0*3+x1
fbeta = fdata(beta,t)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)
prx=x[1:100];pry=y[1:100]
ind=101;ind2=102:110
pr0=x[ind];pr10=x[ind2,]
ndist=61
gridy=seq(-1.598069,1.598069, len=ndist)
# Conditional Function
res1 = cond.F(pr10, gridy, prx, pry,p=1)
res2 = cond.F(pr10, gridy, prx, pry,h=0.3)
res3 = cond.F(pr10, gridy, prx, pry,g=0.25,h=0.3)
plot(res1$Fc[,1],type="l",ylim=c(0,1))
lines(res2$Fc[,1],type="l",col=2)
lines(res3$Fc[,1],type="l",col=3)
## End(Not run)