fregre.gkam {fda.usc} | R Documentation |
Fitting Functional Generalized Kernel Additive Models.
Description
Computes functional regression between functional explanatory variables
(X^{1}(t_1),...,X^{q}(t_q))
and scalar response
Y
using backfitting algorithm.
Usage
fregre.gkam(
formula,
family = gaussian(),
data,
weights = rep(1, nobs),
par.metric = NULL,
par.np = NULL,
offset = NULL,
control = list(maxit = 100, epsilon = 0.001, trace = FALSE, inverse = "solve"),
...
)
Arguments
formula |
an object of class |
family |
a description of the error distribution and link function to
be used in the model. This can be a character string naming a family
function, a family function or the result of a call to a family function.
(See |
data |
List that containing the variables in the model. |
weights |
weights |
par.metric |
List of arguments by covariate to pass to the
|
par.np |
List of arguments to pass to the |
offset |
this can be used to specify an a priori known component to be included in the linear predictor during fitting. |
control |
a list of parameters for controlling the fitting process, by
default: |
... |
Further arguments passed to or from other methods. |
inverse |
="svd" (by default) or ="solve" method. |
Details
The smooth functions f(.)
are estimated nonparametrically using a
iterative local scoring algorithm by applying Nadaraya-Watson weighted
kernel smoothers using fregre.np.cv
in each step, see
Febrero-Bande and Gonzalez-Manteiga (2011) for more details.
Consider the fitted response \hat{Y}=g^{-1}(H_{Q}y)
,
where H_{Q}
is the weighted hat matrix.
Opsomer and Ruppert
(1997) solves a system of equations for fit the unknowns
f(\cdot)
computing the additive smoother matrix H_k
such that \hat{f}_k (X^k)=H_{k}Y
and
H_Q=H_1+,\cdots,+H_q
. The additive model is fitted
as follows:
\hat{Y}=g^{-1}\Big(\sum_i^q
\hat{f_i}(X_i)\Big)
Value
-
result:
List of non-parametric estimation by covariate. -
fitted.values:
Estimated scalar response. -
residuals:
y
minusfitted values
. -
effects:
The residual degrees of freedom. -
alpha:
Hat matrix. -
family:
Coefficient of determination. -
linear.predictors:
Residual variance. -
deviance:
Scalar response. -
aic:
Functional explanatory data. -
null.deviance:
Non functional explanatory data. -
iter
: Distance matrix between curves. -
w:
beta coefficient estimated -
eqrank:
List that containing the variables in the model. -
prior.weights:
Asymmetric kernel used. -
y:
Scalar response. -
H:
Hat matrix, see Opsomer and Ruppert(1997) for more details. -
converged:
conv.
Author(s)
Febrero-Bande, M. and Oviedo de la Fuente, M.
References
Febrero-Bande M. and Gonzalez-Manteiga W. (2012). Generalized Additive Models for Functional Data. TEST. Springer-Velag. doi:10.1007/s11749-012-0308-0
Opsomer J.D. and Ruppert D.(1997). Fitting a bivariate additive model
by local polynomial regression.Annals of Statistics, 25
, 186-211.
See Also
See Also as: fregre.gsam
, fregre.glm
and fregre.np.cv
Examples
## Not run:
data(tecator)
ab=tecator$absorp.fdata[1:100]
ab2=fdata.deriv(ab,2)
yfat=tecator$y[1:100,"Fat"]
# Example 1: # Changing the argument par.np and family
yfat.cat=ifelse(yfat<15,0,1)
xlist=list("df"=data.frame(yfat.cat),"ab"=ab,"ab2"=ab2)
f2<-yfat.cat~ab+ab2
par.NP<-list("ab"=list(Ker=AKer.norm,type.S="S.NW"),
"ab2"=list(Ker=AKer.norm,type.S="S.NW"))
res2=fregre.gkam(f2,family=binomial(),data=xlist,
par.np=par.NP)
res2
# Example 2: Changing the argument par.metric and family link
par.metric=list("ab"=list(metric=semimetric.deriv,nderiv=2,nbasis=15),
"ab2"=list("metric"=semimetric.basis))
res3=fregre.gkam(f2,family=binomial("probit"),data=xlist,
par.metric=par.metric,control=list(maxit=2,trace=FALSE))
summary(res3)
# Example 3: Gaussian family (by default)
# Only 1 iteration (by default maxit=100)
xlist=list("df"=data.frame(yfat),"ab"=ab,"ab2"=ab2)
f<-yfat~ab+ab2
res=fregre.gkam(f,data=xlist,control=list(maxit=1,trace=FALSE))
res
## End(Not run)