fregre.bootstrap {fda.usc} | R Documentation |
Bootstrap regression
Description
Estimate the beta parameter by wild or smoothed bootstrap procedure
Usage
fregre.bootstrap(
model,
nb = 500,
wild = TRUE,
type.wild = "golden",
newX = NULL,
smo = 0.1,
smoX = 0.05,
alpha = 0.95,
kmax.fix = FALSE,
draw = TRUE,
...
)
Arguments
model |
|
nb |
Number of bootstrap samples. |
wild |
Naive or smoothed bootstrap depending of the |
type.wild |
Type of distribution of V in wild bootstrap procedure, see
|
newX |
A |
smo |
If |
smoX |
If |
alpha |
Significance level used for graphical option, |
kmax.fix |
The number of maximum components to consider in each bootstrap iteration. =TRUE, the bootstrap procedure considers the same number of components used in the previous fitted model. =FALSE, the bootstrap procedure estimates the best components in each iteration. |
draw |
=TRUE, plot the bootstrap estimated beta, and (optional) the CI for the predicted response values. |
... |
Further arguments passed to or from other methods. |
Details
Estimate the beta parameter by wild or smoothed bootstrap procedure using
principal components representation fregre.pc
, Partial least
squares components (PLS) representation fregre.pls
or basis
representation fregre.basis
.
If a new curves are in
newX
argument the bootstrap method estimates the response using the
bootstrap resamples.
If the model exhibits heteroskedasticity, the use of wild bootstrap procedure is recommended (by default).
Value
Return:
-
model
fregre.pc
,fregre.pls
orfregre.basis
object. -
beta.boot
functional beta estimated by thenb
bootstrap regressions. -
norm.boot
norm of diferences beetween the nboot betas estimated by bootstrap and beta estimated by regression model. -
coefs.boot
matrix with the bootstrap estimated basis coefficients. -
kn.boot
vector or list of lengthnb
with index of the basis, PC or PLS factors selected in each bootstrap regression. -
y.pred
predicted response values usingnewX
covariates. -
y.boot
matrix of bootstrap predicted response values usingnewX
covariates. -
newX
afdata
class containing the values of the model covariates at which predictions are required (only for smoothed bootstrap).
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Febrero-Bande, M., Galeano, P. and Gonzalez-Manteiga, W. (2010). Measures of influence for the functional linear model with scalar response. Journal of Multivariate Analysis 101, 327-339.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See Also as: fregre.pc
, fregre.pls
,
fregre.basis
, .
Examples
## Not run:
data(tecator)
iest<-1:165
x=tecator$absorp.fdata[iest]
y=tecator$y$Fat[iest]
nb<-25 ## Time-consuming
res.pc=fregre.pc(x,y,1:6)
# Fix the compontents used in the each regression
res.boot1=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=TRUE)
# Select the "best" compontents used in the each regression
res.boot2=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=FALSE)
res.boot3=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,kmax.fix=10)
## predicted responses and bootstrap confidence interval
newx=tecator$absorp.fdata[-iest]
res.boot4=fregre.bootstrap(res.pc,nb=nb,wild=FALSE,newX=newx,draw=TRUE)
## End(Not run)