fEqDistrib.test {fda.usc} | R Documentation |
Tests for checking the equality of distributions between two functional populations.
Description
Three tests for the equality of distributions of two populations are provided. The null hypothesis is that the two populations are the same
Usage
XYRP.test(X.fdata, Y.fdata, nproj = 10, npc = 5, test = c("KS", "AD"))
MMD.test(
X.fdata,
Y.fdata,
metric = "metric.lp",
B = 1000,
alpha = 0.95,
kern = "RBF",
ops.metric = list(lp = 2),
draw = FALSE
)
MMDA.test(
X.fdata,
Y.fdata,
metric = "metric.lp",
B = 1000,
alpha = 0.95,
kern = "RBF",
ops.metric = list(lp = 2),
draw = FALSE
)
fEqDistrib.test(
X.fdata,
Y.fdata,
metric = "metric.lp",
method = c("Exch", "WildB"),
B = 5000,
ops.metric = list(lp = 2),
iboot = FALSE
)
Arguments
X.fdata |
|
Y.fdata |
|
nproj |
Number of projections for |
npc |
The number of principal components employed for generating the random projections. |
test |
For |
metric |
Character with the metric function for computing distances among curves. |
B |
Number of bootstrap or Monte Carlo replicas. |
alpha |
Confidence level for computing the threshold. By default =0.95. |
kern |
For |
ops.metric |
List of parameters to be used with |
draw |
By default, FALSE. Plots the density of the bootstrap replicas jointly with the statistic. |
method |
In |
iboot |
In |
Details
XYRP.test
computes the p-values using random projections. Requires kSamples
library.
MMD.test
computes Maximum Mean Discrepancy p-values using permutations (see Sejdinovic et al, (2013)) and MMDA.test
does the same using an asymptotic approximation.
fEqDistrib.test
checks the equality of distributions using an embedding in a RKHS and two bootstrap approximations for
calibration.
Value
A list with the following components by function:
-
XYRP.test
:FDR.pv
: p-value using FDR,proj.pv
: Matrix of p-values obtained for projections. -
MMD.test
,MMDA.test
:stat
: Statistic,p.value
: p-value,thresh
: Threshold at levelalpha
. -
fEqDistrib.test
:result
:data.frame
with columnsStat
andp.value
,Boot
:data.frame
with bootstrap replicas ifiboot=TRUE
.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.febrero@usc.es
References
Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K. Equivalence of distance-based and RKHS-based statistics in Hypothesis Testing The Annals of Statistics, 2013. DOI 10.1214/13-AOS1140.
See Also
fmean.test.fdata, cov.test.fdata
.
Examples
## Not run:
tt=seq(0,1,len=51)
bet=0
mu1=fdata(10*tt*(1-tt)^(1+bet),tt)
mu2=fdata(10*tt^(1+bet)*(1-tt),tt)
fsig=1
X=rproc2fdata(100,tt,mu1,sigma="vexponential",par.list=list(scale=0.2,theta=0.35))
Y=rproc2fdata(100,tt,mu2,sigma="vexponential",par.list=list(scale=0.2*fsig,theta=0.35))
fmean.test.fdata(X,Y,npc=-.98,draw=TRUE)
cov.test.fdata(X,Y,npc=5,draw=TRUE)
bet=0.1
mu1=fdata(10*tt*(1-tt)^(1+bet),tt)
mu2=fdata(10*tt^(1+bet)*(1-tt),tt)
fsig=1.5
X=rproc2fdata(100,tt,mu1,sigma="vexponential",par.list=list(scale=0.2,theta=0.35))
Y=rproc2fdata(100,tt,mu2,sigma="vexponential",par.list=list(scale=0.2*fsig,theta=0.35))
fmean.test.fdata(X,Y,npc=-.98,draw=TRUE)
cov.test.fdata(X,Y,npc=5,draw=TRUE)
XYRP.test(X,Y,nproj=15)
MMD.test(X,Y,B=1000)
fEqDistrib.test(X,Y,B=1000)
## End(Not run)