fregre.pls {fda.usc}R Documentation

Functional Penalized PLS regression with scalar response

Description

Computes functional linear regression between functional explanatory variable X(t)X(t) and scalar response YY using penalized Partial Least Squares (PLS)

Y=<X~,β>+ϵ=TX~(t)β(t)dt+ϵY=\big<\tilde{X},\beta\big>+\epsilon=\int_{T}{\tilde{X}(t)\beta(t)dt+\epsilon}

where <,> \big< \cdot , \cdot \big> denotes the inner product on L2L_2 and ϵ\epsilon are random errors with mean zero , finite variance σ2\sigma^2 and E[X~(t)ϵ]=0E[\tilde{X}(t)\epsilon]=0.
{νk}k=1\left\{\nu_k\right\}_{k=1}^{\infty} orthonormal basis of PLS to represent the functional data as Xi(t)=k=1γikνkX_i(t)=\sum_{k=1}^{\infty}\gamma_{ik}\nu_k.

Usage

fregre.pls(fdataobj, y = NULL, l = NULL, lambda = 0, P = c(0, 0, 1), ...)

Arguments

fdataobj

fdata class object.

y

Scalar response with length n.

l

Index of components to include in the model.

lambda

Amount of penalization. Default value is 0, i.e. no penalization is used.

P

If P is a vector: P are coefficients to define the penalty matrix object. By default P=c(0,0,1) penalize the second derivative (curvature) or acceleration. If P is a matrix: P is the penalty matrix object.

...

Further arguments passed to or from other methods.

Details

Functional (FPLS) algorithm maximizes the covariance between X(t)X(t) and the scalar response YY via the partial least squares (PLS) components. The functional penalized PLS are calculated in fdata2pls by alternative formulation of the NIPALS algorithm proposed by Kraemer and Sugiyama (2011).
Let {ν~k}k=1\left\{\tilde{\nu}_k\right\}_{k=1}^{\infty} the functional PLS components and X~i(t)=k=1γ~ikν~k\tilde{X}_i(t)=\sum_{k=1}^{\infty}\tilde{\gamma}_{ik}\tilde{\nu}_k and β(t)=k=1β~kν~k\beta(t)=\sum_{k=1}^{\infty}\tilde{\beta}_k\tilde{\nu}_k. The functional linear model is estimated by:

y^=<X,β^>k=1knγ~kβ~k\hat{y}=\big< X,\hat{\beta} \big> \approx \sum_{k=1}^{k_n}\tilde{\gamma}_{k}\tilde{\beta}_k


The response can be fitted by:

Value

Return:

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es

References

Preda C. and Saporta G. PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 (2005): 149-158.

N. Kraemer, A.-L. Boulsteix, and G. Tutz (2008). Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data. Chemometrics and Intelligent Laboratory Systems, 94, 60 - 69. doi:10.1016/j.chemolab.2008.06.009

Martens, H., Naes, T. (1989) Multivariate calibration. Chichester: Wiley.

Kraemer, N., Sugiyama M. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association. Volume 106, 697-705.

Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/

See Also

See Also as: P.penalty and fregre.pls.cv.
Alternative method: fregre.pc.

Examples

## Not run: 
data(tecator)
x <- tecator$absorp.fdata
y <- tecator$y$Fat
res <- fregre.pls(x,y,c(1:4))
summary(res)
res1 <- fregre.pls(x,y,l=1:4,lambda=100,P=c(1))
res4 <- fregre.pls(x,y,l=1:4,lambda=1,P=c(0,0,1))
summary(res4)#' plot(res$beta.est)
lines(res1$beta.est,col=4)
lines(res4$beta.est,col=2)

## End(Not run)

[Package fda.usc version 2.1.0 Index]