Kernel.asymmetric {fda.usc} | R Documentation |
Asymmetric Smoothing Kernel
Description
Represent Asymmetric Smoothing Kernels: normal, cosine, triweight, quartic and uniform.
AKer.norm=ifelse(u>=0,2*dnorm(u),0) | |
AKer.cos=ifelse(u>=0,pi/2*(cos(pi*u/2)),0) | |
AKer.epa=ifelse(u>=0 & u<=1,3/2*(1-u^2),0) | |
AKer.tri=ifelse(u>=0 & u<=1,35/16*(1-u^2)^3,0) | |
AKer.quar=ifelse(u>=0 & u<=1,15/8*(1-u^2)^2,0) | |
AKer.unif=ifelse(u>=0 & u<=1,1,0) | |
Usage
Kernel.asymmetric(u, type.Ker = "AKer.norm")
Arguments
u |
Data. |
type.Ker |
Type of asymmetric metric kernel, by default asymmetric normal kernel. |
Details
Type of Asymmetric kernel:
Asymmetric Normal Kernel:
AKer.norm |
|
Asymmetric Cosine Kernel: AKer.cos |
|
Asymmetric Epanechnikov Kernel: AKer.epa |
|
Asymmetric Triweight
Kernel: AKer.tri |
|
Asymmetric Quartic Kernel:
AKer.quar |
|
Asymmetric Uniform Kernel: AKer.unif |
|
Value
Returns asymmetric kernel.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Examples
y=qnorm(seq(.1,.9,len=100))
a<-Kernel.asymmetric(u=y)
b<-Kernel.asymmetric(type.Ker="AKer.tri",u=y)
c=AKer.cos(y)
[Package fda.usc version 2.1.0 Index]