predict.fregre.gls {fda.usc} | R Documentation |
Predictions from a functional gls object
Description
The predictions for the functional generalized least squares fitted linear
model represented by object
are obtained at the covariate values
defined in newx
.
Usage
## S3 method for class 'fregre.gls'
predict(
object,
newx = NULL,
type = "response",
se.fit = FALSE,
scale = NULL,
df,
interval = "none",
...
)
## S3 method for class 'fregre.igls'
predict(
object,
newx = NULL,
data,
df = df,
weights = 1,
pred.var,
n.ahead = 1L,
...
)
Arguments
object |
|
newx |
An optional data list in which to look for variables with which to predict. If omitted, the fitted values are used. List of new explanatory data. |
type |
Type of prediction (response or model term). |
se.fit |
=TRUE (not default) standard error estimates are returned for each prediction. |
scale |
Scale parameter for std.err. calculation. |
df |
Degrees of freedom for scale. |
interval |
Type of interval calculation. |
... |
Further arguments passed to or from other methods. |
data |
Data frame with the time or spatinal index |
weights |
variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in newdata |
pred.var |
the variance(s) for future observations to be assumed for
prediction intervals. See |
n.ahead |
number of steps ahead at which to predict. |
Value
a vector with the predicted values.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Oviedo de la Fuente, M., Febrero-Bande, M., Pilar Munoz, and Dominguez, A. Predicting seasonal influenza transmission using Functional Regression Models with Temporal Dependence. arXiv:1610.08718. https://arxiv.org/abs/1610.08718
See Also
Examples
## Not run:
data(tecator)
ind<-1:190
x <-fdata.deriv(tecator$absorp.fdata,nderiv=1)
dataf=as.data.frame(tecator$y)
dataf$itime <- 1:nrow(x)
ldat=list("df"=dataf[ind,],"x"=x[ind])
newldat=list("df"=dataf[-ind,],"x"=x[-ind])
newy <- tecator$y$Fat[-ind]
ff <- Fat ~ x
res.lm <- fregre.lm(ff,data=ldat)
summary(res.lm)
res.gls <- fregre.gls(ff,data=ldat, correlation=corAR1())
summary(res.gls)
par.cor <- list("cor.ARMA"=list("p"=1))
par.cor <- list("cor.ARMA"=list("index"=c("itime"),"p"=1))
res.igls <- fregre.igls(ff,data=ldat,correlation=par.cor)
pred.lm <- predict(res.lm,newldat)
pred.gls <- predict(res.gls,newldat)
pred.igls <- predict(res.igls,newldat)
mean((pred.lm-newldat$df$Fat)^2)
mean((pred.gls-newldat$df$Fat)^2)
mean((pred.igls-newldat$df$Fat)^2)
## End(Not run)