h.default {fda.usc} | R Documentation |
Calculation of the smoothing parameter (h) for a functional data
Description
Calculation of the smoothing parameter (h) for a functional data using nonparametric kernel estimation.
Usage
h.default(
fdataobj,
prob = c(0.025, 0.25),
len = 51,
metric = metric.lp,
type.S = "S.NW",
Ker = Ker.norm,
...
)
Arguments
fdataobj |
|
prob |
Vector of probabilities for extracting the quantiles of the distance matrix. If |
len |
Vector length of smoothing parameter |
metric |
If is a function: name of the function to calculate the
distance matrix between the curves, by default |
type.S |
Type of smothing matrix |
Ker |
Kernel function. By default, Ker.norm. Useful for scaling the bandwidth values according to Kernel |
... |
Arguments to be passed for metric argument. |
Value
Returns the vector of smoothing parameter or bandwidth h
.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
See Also
See Also as metric.lp
, Kernel
and
S.NW
.
Function used in fregre.np
and
fregre.np.cv
function.
Examples
## Not run:
data(aemet)
h1<-h.default(aemet$temp,prob=c(0.025, 0.25),len=2)
mdist<-metric.lp(aemet$temp)
h2<-h.default(aemet$temp,len=2,metric=mdist)
h3<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=2)
h4<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=4)
h5<-h.default(aemet$temp,prob=c(.2),type.S="S.KNN")
h1;h2;h3;h4;h5
## End(Not run)