FDR {fda.usc} | R Documentation |
False Discorvery Rate (FDR)
Description
Compute the False Discovery Rate for a vector of p-values and alpha value.
Usage
FDR(pvalues = NULL, alpha = 0.95, dep = 1)
pvalue.FDR(pvalues = NULL, dep = 1)
Arguments
pvalues |
Vector of p-values |
alpha |
Alpha value (level of significance). |
dep |
Parameter dependence test. By default |
Details
FDR
method is used for multiple hypothesis testing to correct
problems of multiple contrasts.
If dep = 1
, the tests are
positively correlated, for example when many tests are the same contrast.
If dep < 1
the tests are negatively correlated.
Value
Return:
-
out.FDR
=TRUE
. If there are significative differences. -
pv.FDR
p-value for False Discovery Rate test.
Author(s)
Febrero-Bande, M. and Oviedo de la Fuente, M.
References
Benjamini, Y., Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics. 29 (4): 1165-1188. DOI:10.1214/aos/1013699998.
See Also
Function used in fanova.RPm
Examples
p=seq(1:50)/1000
FDR(p)
pvalue.FDR(p)
FDR(p,alpha=0.9999)
FDR(p,alpha=0.9)
FDR(p,alpha=0.9,dep=-1)