classif.gsam.vs {fda.usc} | R Documentation |
Variable Selection in Functional Data Classification
Description
Computes classification by selecting the functional (and non functional) explanatory variables.
Usage
classif.gsam.vs(
data = list(),
y,
x,
family = binomial(),
weights = "equal",
basis.x = NULL,
basis.b = NULL,
type = "1vsall",
prob = 0.5,
alpha = 0.05,
dcor.min = 0.01,
smooth = TRUE,
measure = "accuracy",
xydist,
...
)
Arguments
data |
List that containing the variables in the model. "df" element
is a |
y |
|
x |
|
family |
a description of the error distribution and link function to
be used in the model. This can be a character string naming a family
function, a family function or the result of a call to a family function.
(See |
weights |
Weights:
|
basis.x |
List of basis for functional explanatory data estimation. |
basis.b |
List of basis for functional beta parameter estimation. |
type |
|
prob |
probability value used for binary discriminant. |
alpha |
alpha value to test the null hypothesis for the test of
independence among covariate X and residual e. By default is |
dcor.min |
lower threshold for the variable X to be considered. X is
discarded if the distance correlation |
smooth |
if |
measure |
measure related with correct classification (by default accuracy). |
xydist |
list with the matrices of distances of each variable (all potential covariates and the response) with itself. |
... |
Further arguments passed to or from other methods. |
Value
Return the final fitted model (same result of the classsification method) plus:
-
dcor
,matrix
with the values of distance correlation for each pontential covariate (by column) and the residual of the model in each step (by row). -
i.predictor
,vector
with 1 if the variable is selected, 0 otherwise. -
ipredictor
,vector
with the name of selected variables (in order of selection)
Note
Adapted version from the original method in repression: fregre.gsam.vs
.
Author(s)
Febrero-Bande, M. and Oviedo de la Fuente, M.
References
Febrero-Bande, M., Gonz\'alez-Manteiga, W. and Oviedo de la Fuente, M. Variable selection in functional additive regression models, (2018). Computational Statistics, 1-19. DOI: doi:10.1007/s00180-018-0844-5
See Also
See Also as: classif.gsam
.
Examples
## Not run:
data(tecator)
x <- tecator$absorp.fdata
x1 <- fdata.deriv(x)
x2 <- fdata.deriv(x,nderiv=2)
y <- factor(ifelse(tecator$y$Fat<12,0,1))
xcat0 <- cut(rnorm(length(y)),4)
xcat1 <- cut(tecator$y$Protein,4)
xcat2 <- cut(tecator$y$Water,4)
ind <- 1:129
dat <- data.frame("Fat"=y, x1$data, xcat1, xcat2)
ldat <- ldata("df"=dat[ind,],"x"=x[ind,],"x1"=x1[ind,],"x2"=x2[ind,])
# 3 functionals (x,x1,x2), 3 factors (xcat0, xcat1, xcat2)
# and 100 scalars (impact poitns of x1)
res.gam <- classif.gsam(Fat~s(x),data=ldat)
summary(res.gam)
# Time consuming
res.gam.vs <- classif.gsam.vs("Fat",data=ldat)
summary(res.gam.vs)
res.gam.vs$i.predictor
res.gam.vs$ipredictor
# Prediction
newldat <- ldata("df"=dat[-ind,],"x"=x[-ind,],
"x1"=x1[-ind,],"x2"=x2[-ind,])
pred.gam <- predict(res.gam,newldat)
pred.gam.vs <- predict(res.gam.vs,newldat)
cat2meas(newldat$df$Fat, pred.gam)
cat2meas(newldat$df$Fat, pred.gam.vs)
## End(Not run)