rwild {fda.usc} | R Documentation |
Wild bootstrap residuals
Description
The wild bootstrap residuals are computed as residuals*V
, where V
is a sampling from a random variable (see details section).
Usage
rwild(residuals, type = "golden")
Arguments
residuals |
residuals |
type |
Type of distribution of V. |
Details
For the construction of wild bootstrap residuals, sampling from a random variable V
such that E[V^2]=0
and E[V]=0
is needed.
A simple and suitable V
is obtained with a discrete variable of the form:
“golden”, Sampling from golden section bootstrap values suggested by Mammen (1993).
P\Bigg\{ V=\frac{1-\sqrt{5}}{2} \Bigg\} = \frac{5+\sqrt{5}}{10} \, and \, P\Bigg\{ V=\frac{1+\sqrt{5}}{2} \Bigg\} = \frac{5-\sqrt{5}}{10},
which leads to the golden section bootstrap.
“Rademacher”, Sampling from Rademacher distribution values
\big\{-1,\,1\big\}
with probabilities\big\{\frac{1}{2},\,\frac{1}{2}\big\}
, respectively.“normal”, Sampling from a standard normal distribution.
Value
The wild bootstrap residuals computed using a sample of the random variable V
.
Author(s)
Eduardo Garcia-Portugues, Manuel Febrero-Bande and Manuel Oviedo de la Fuente manuel.oviedo@udc.es.
References
Mammen, E. (1993). Bootstrap and wild bootstrap for high dimensional linear models. Annals of Statistics 21, 255 285. Davidson, R. and E. Flachaire (2001). The wild bootstrap, tamed at last. working paper IER1000, Queens University.
See Also
flm.test
, flm.Ftest
, dfv.test
, fregre.bootstrap
Examples
n<-100
# For golden wild bootstrap variable
e.boot0=rwild(rep(1,len=n),"golden")
# Construction of wild bootstrap residuals
e=rnorm(n)
e.boot1=rwild(e,"golden")
e.boot2=rwild(e,"Rademacher")
e.boot3=rwild(e,"normal")
summary(e.boot1)
summary(e.boot2)
summary(e.boot3)