fregre.basis {fda.usc}R Documentation

Functional Regression with scalar response using basis representation.

Description

Computes functional regression between functional explanatory variable X(t)X(t) and scalar response YY using basis representation.

Usage

fregre.basis(
  fdataobj,
  y,
  basis.x = NULL,
  basis.b = NULL,
  lambda = 0,
  Lfdobj = vec2Lfd(c(0, 0), rtt),
  weights = rep(1, n),
  ...
)

Arguments

fdataobj

fdata class object.

y

Scalar response with length n.

basis.x

Basis for functional explanatory data fdataobj.

basis.b

Basis for functional beta parameter.

lambda

A roughness penalty. By default, no penalty lambda=0.

Lfdobj

See eval.penalty.

weights

weights

...

Further arguments passed to or from other methods.

Details

Y=<X,β>+ϵ=TX(t)β(t)dt+ϵY=\big<X,\beta\big>+\epsilon=\int_{T}{X(t)\beta(t)dt+\epsilon}

where <,> \big< \cdot , \cdot \big> denotes the inner product on L2L_2 and ϵ\epsilon are random errors with mean zero, finite variance σ2\sigma^2 and E[X(t)ϵ]=0E[X(t)\epsilon]=0.

The function uses the basis representation proposed by Ramsay and Silverman (2005) to model the relationship between the scalar response and the functional covariate by basis representation of the observed functional data X(t)k=1kn1ckξk(t)X(t)\approx\sum_{k=1}^{k_{n1}} c_k \xi_k(t) and the unknown functional parameter β(t)k=1kn2bkϕk(t)\beta(t)\approx\sum_{k=1}^{k_{n2}} b_k \phi_k(t).

The functional linear models estimated by the expression:

y^=<X,β^>=CTψ(t)ϕT(t)b^=X~b^\hat{y}= \big< X,\hat{\beta} \big> = C^{T}\psi(t)\phi^{T}(t)\hat{b}=\tilde{X}\hat{b}

where X~(t)=CTψ(t)ϕT(t)\tilde{X}(t)=C^{T}\psi(t)\phi^{T}(t), and b^=(X~TX~)1X~Ty\hat{b}=(\tilde{X}^{T}\tilde{X})^{-1}\tilde{X}^{T}y and so, y^=X~b^=X~(X~TX~)1X~Ty=Hy\hat{y}=\tilde{X}\hat{b}=\tilde{X}(\tilde{X}^{T}\tilde{X})^{-1}\tilde{X}^{T}y=Hy where HH is the hat matrix with degrees of freedom: df=tr(H)df=tr(H).

If λ>0\lambda>0 then fregre.basis incorporates a roughness penalty:
y^=X~b^=X~(X~TX~+λR0)1X~Ty=Hλy\hat{y}=\tilde{X}\hat{b}=\tilde{X}(\tilde{X}^{T}\tilde{X}+\lambda R_0)^{-1}\tilde{X}^{T}y= H_{\lambda}y where R0R_0 is the penalty matrix.

This function allows covariates of class fdata, matrix, data.frame or directly covariates of class fd. The function also gives default values to arguments basis.x and basis.b for representation on the basis of functional data X(t)X(t) and the functional parameter β(t)\beta(t), respectively.

If basis=NULL creates the bspline basis by create.bspline.basis.
If the functional covariate fdataobj is a matrix or data.frame, it creates an object of class "fdata" with default attributes, see fdata.
If basis.x$type=``fourier'' and basis.b$type=``fourier'', the basis are orthonormal and the function decreases the number of fourier basis elements on the min(kn1,kn2)min(k_{n1},k_{n2}), where kn1k_{n1} and kn2k_{n2} are the number of basis element of basis.x and basis.b respectively.

Value

Return:

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es

References

Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer, New York.

Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/

See Also

See Also as: fregre.basis.cv, summary.fregre.fd and predict.fregre.fd.
Alternative method: fregre.pc and fregre.np.

Examples

## Not run: 
# fregre.basis
data(tecator)
names(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecator$y$Fat[ind]
tt=absorp[["argvals"]]
res1=fregre.basis(x,y)
summary(res1)
basis1=create.bspline.basis(rangeval=range(tt),nbasis=19)
basis2=create.bspline.basis(rangeval=range(tt),nbasis=9)
res5=fregre.basis(x,y,basis1,basis2)
summary(res5)
x.d2=fdata.deriv(x,nbasis=19,nderiv=1,method="bspline",class.out="fdata")
res7=fregre.basis(x.d2,y,basis1,basis2)
summary(res7)

## End(Not run)

[Package fda.usc version 2.1.0 Index]