optim.basis {fda.usc} | R Documentation |
Select the number of basis using GCV method.
Description
Functional data estimation via basis representation using cross-validation (CV) or generalized cross-validation (GCV) method with a roughness penalty.
Usage
optim.basis(
fdataobj,
type.CV = GCV.S,
W = NULL,
lambda = 0,
numbasis = floor(seq(ncol(fdataobj)/16, ncol(fdataobj)/2, len = 10)),
type.basis = "bspline",
par.CV = list(trim = 0, draw = FALSE),
verbose = FALSE,
...
)
Arguments
fdataobj |
|
type.CV |
Type of cross-validation. By default generalized cross-validation (GCV) method. |
W |
Matrix of weights. |
lambda |
A roughness penalty. By default, no penalty |
numbasis |
Number of basis to use. |
type.basis |
Character string which determines type of basis. By default "bspline". |
par.CV |
List of parameters for type.CV: trim, the alpha of the
trimming and |
verbose |
If |
... |
Further arguments passed to or from other methods. Arguments to be passed by default to create.basis. |
Details
Provides the least GCV for functional data for a list of number of basis
num.basis
and lambda values lambda
. You can define the type of
CV to use with the type.CV
, the default is used GCV.S
.
Smoothing matrix is performed by S.basis
. W
is the
matrix of weights of the discretization points.
Value
-
gcv
Returns GCV values calculated for input parameters. -
fdataobj
Matrix of set cases with dimension (n
xm
), wheren
is the number of curves andm
are the points observed in each curve. -
fdata.est
Estimatedfdata
class object. -
numbasis.opt
numbasis
value that minimizes CV or GCV method. -
lambda.opt
lambda
value that minimizes CV or GCV method. -
basis.opt
basis
for the minimum CV or GCV method. -
S.opt
Smoothing matrix for the minimum CV or GCV method. -
gcv.opt
Minimum of CV or GCV method. -
lambda
A roughness penalty. By default, no penaltylambda=0
. -
numbasis
Number of basis to use. -
verbose
IfTRUE
information about GCV values and input parameters is printed. Default isFALSE
.
Note
min.basis deprecated.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer, New York.
Wasserman, L. All of Nonparametric Statistics. Springer Texts in Statistics, 2006.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See Also as S.basis
.
Alternative method:
optim.np
Examples
## Not run:
a1<-seq(0,1,by=.01)
a2=rnorm(length(a1),sd=0.2)
f1<-(sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
nc<-50
np<-length(f1)
tt=1:101
S<-S.NW(tt,2)
mdata<-matrix(NA,ncol=np,nrow=50)
for (i in 1:50) mdata[i,]<- (sin(2*pi*a1))+rnorm(length(a1),sd=0.2)
mdata<-fdata(mdata)
nb<-floor(seq(5,29,len=5))
l<-2^(-5:15)
out<-optim.basis(mdata,lambda=l,numbasis=nb,type.basis="fourier")
matplot(t(out$gcv),type="l",main="GCV with fourier basis")
# out1<-optim.basis(mdata,type.CV = CV.S,lambda=l,numbasis=nb)
# out2<-optim.basis(mdata,lambda=l,numbasis=nb)
# variance calculations
y<-mdata
i<-3
z=qnorm(0.025/np)
fdata.est<-out$fdata.est
var.e<-Var.e(mdata,out$S.opt)
var.y<-Var.y(mdata,out$S.opt)
var.y2<-Var.y(mdata,out$S.opt,var.e)
# estimated fdata and point confidence interval
upper.var.e<-out$fdata.est[["data"]][i,]-z*sqrt(diag(var.e))
lower.var.e<-out$fdata.est[["data"]][i,]+z*sqrt(diag(var.e))
dev.new()
plot(y[i,],lwd=1,ylim=c(min(lower.var.e),max(upper.var.e)))
lines(out$fdata.est[["data"]][i,],col=gray(.1),lwd=1)
lines(out$fdata.est[["data"]][i,]+z*sqrt(diag(var.y)),col=gray(0.7),lwd=2)
lines(out$fdata.est[["data"]][i,]-z*sqrt(diag(var.y)),col=gray(0.7),lwd=2)
lines(upper.var.e,col=gray(.3),lwd=2,lty=2)
lines(lower.var.e,col=gray(.3),lwd=2,lty=2)
legend("top",legend=c("Var.y","Var.error"), col = c(gray(0.7),
gray(0.3)),lty=c(1,2))
## End(Not run)