| fregre.pls.cv {fda.usc} | R Documentation |
Functional penalized PLS regression with scalar response using selection of number of PLS components
Description
Functional Regression with scalar response using selection of number of penalized principal componentes PPLS through cross-validation. The algorithm selects the PPLS components with best estimates the response. The selection is performed by cross-validation (CV) or Model Selection Criteria (MSC). After is computing functional regression using the best selection of PPLS components.
Usage
fregre.pls.cv(
fdataobj,
y,
kmax = 8,
lambda = 0,
P = c(0, 0, 1),
criteria = "SIC",
...
)
Arguments
fdataobj |
|
y |
Scalar response with length |
kmax |
The number of components to include in the model. |
lambda |
Vector with the amounts of penalization. Default value is 0,
i.e. no penalization is used. If |
P |
The vector of coefficients to define the penalty matrix object. For
example, if |
criteria |
Type of cross-validation (CV) or Model Selection Criteria (MSC) applied. Possible values are "CV", "AIC", "AICc", "SIC", "SICc", "HQIC". |
... |
Further arguments passed to |
Details
The algorithm selects the best principal components
pls.opt from the first kmax PLS and (optionally) the best
penalized parameter lambda.opt from a sequence of non-negative
numbers lambda.
The method selects the best principal components with minimum MSC criteria by stepwise regression using
fregre.plsin each step.The process (point 1) is repeated for each
lambdavalue.The method selects the principal components (
pls.opt=pls.order[1:k.min]) and (optionally) the lambda parameter with minimum MSC criteria.
Finally, is computing functional PLS regression between functional explanatory variable X(t) and scalar response Y using the best selection of PLS pls.opt and ridge parameter rn.opt.
The criteria selection is done by cross-validation (CV) or Model Selection Criteria (MSC).
Predictive Cross-Validation:
PCV(k_n)=\frac{1}{n}\sum_{i=1}^{n}{\Big(y_i -\hat{y}_{(-i,k_n)}\Big)^2},criteria=“CV”Model Selection Criteria:
MSC(k_n)=log \left[ \frac{1}{n}\sum_{i=1}^{n}{\Big(y_i-\hat{y}_i\Big)^2} \right] +p_n\frac{k_n}{n}
p_n=\frac{log(n)}{n},criteria=“SIC” (by default)
p_n=\frac{log(n)}{n-k_n-2},criteria=“SICc”
p_n=2,criteria=“AIC”
p_n=\frac{2n}{n-k_n-2},criteria=“AICc”
p_n=\frac{2log(log(n))}{n},criteria=“HQIC”
wherecriteriais an argument that controls the type of validation used in the selection of the smoothing parameterkmax=k_nand penalized parameterlambda=\lambda.
Value
Return:
-
fregre.plsFitted regression object by the best (pls.opt) components. -
pls.optIndex of PLS components' selected. -
MSC.minMinimum Model Selection Criteria (MSC) value for the (pls.optcomponents. -
MSCMinimum Model Selection Criteria (MSC) value forkmaxcomponents.
Note
criteria=``CV'' is not recommended: time-consuming.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Preda C. and Saporta G. PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 (2005): 149-158.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See also as:fregre.pc .
Examples
## Not run:
data(tecator)
x<-tecator$absorp.fdata[1:129]
y<-tecator$y$Fat[1:129]
# no penalization
pls1<- fregre.pls.cv(x,y,8)
# 2nd derivative penalization
pls2<-fregre.pls.cv(x,y,8,lambda=0:5,P=c(0,0,1))
## End(Not run)