fregre.np.cv {fda.usc} | R Documentation |
Cross-validation functional regression with scalar response using kernel estimation.
Description
Computes functional regression between functional explanatory variables and scalar response using asymmetric kernel estimation by cross-validation method.
Usage
fregre.np.cv(
fdataobj,
y,
h = NULL,
Ker = AKer.norm,
metric = metric.lp,
type.CV = GCV.S,
type.S = S.NW,
par.CV = list(trim = 0),
par.S = list(w = 1),
...
)
Arguments
fdataobj |
|
y |
Scalar response with length |
h |
Bandwidth, |
Ker |
Type of asymmetric kernel used, by default asymmetric normal kernel. |
metric |
Metric function, by default |
type.CV |
Type of cross-validation. By default generalized
cross-validation |
type.S |
Type of smothing matrix |
par.CV |
List of parameters for |
par.S |
List of parameters for |
... |
Arguments to be passed for |
Details
The non-parametric functional regression model can be written as follows
y_i =r(X_i) + \epsilon_i
where the unknown smooth real function
r
is estimated using kernel estimation by means of
\hat{r}(X)=\frac{\sum_{i=1}^{n}{K(h^{-1}d(X,X_{i}))y_{i}}}{\sum_{i=1}^{n}{K(h^{-1}d(X,X_{i}))}}
where K
is an kernel function (see Ker
argument), h
is
the smoothing parameter and d
is a metric or a semi-metric (see
metric
argument).
The function estimates the value of smoothing parameter (also called
bandwidth) h
through Generalized Cross-validation GCV
criteria, see GCV.S
or CV.S
.
The function estimates the value of smoothing parameter or the bandwidth
through the cross validation methods: GCV.S
or
CV.S
. It computes the distance between curves using the
metric.lp
, although any other semimetric could be used (see
semimetric.basis
or semimetric.NPFDA
functions).
Different asymmetric kernels can be used, see
Kernel.asymmetric
.
Value
Return:
-
call
The matched call. -
residuals
y
minusfitted values
. -
fitted.values
Estimated scalar response. -
df.residual
The residual degrees of freedom. -
r2
Coefficient of determination. -
sr2
Residual variance. -
H
Hat matrix. -
y
Response. -
fdataobj
Functional explanatory data. -
mdist
Distance matrix betweenx
andnewx
. -
Ker
Asymmetric kernel used. -
gcv
CV or GCV values. -
h.opt
smoothing parameter or bandwidth that minimizes CV or GCV method. -
h
Vector of smoothing parameter or bandwidth. -
cv
List with the fitted values and residuals estimated by CV, without the same curve.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also
See Also as: fregre.np
,
summary.fregre.fd
and predict.fregre.fd
.
Alternative method: fregre.basis.cv
and
fregre.np.cv
.
Examples
## Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecator$y$Fat[ind]
Ker=AKer.tri
res.np=fregre.np.cv(x,y,Ker=Ker)
summary(res.np)
res.np2=fregre.np.cv(x,y,type.CV=GCV.S,criteria="Shibata")
summary(res.np2)
## Example with other semimetrics (not run)
res.pca1=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.pca,q=1)
summary(res.pca1)
res.deriv=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.deriv)
summary(res.deriv)
x.d2=fdata.deriv(x,nderiv=1,method="fmm",class.out='fdata')
res.deriv2=fregre.np.cv(x.d2,y,Ker=Ker)
summary(res.deriv2)
x.d3=fdata.deriv(x,nderiv=1,method="bspline",class.out='fdata')
res.deriv3=fregre.np.cv(x.d3,y,Ker=Ker)
summary(res.deriv3)
## End(Not run)