Kernel {fda.usc} | R Documentation |
Symmetric Smoothing Kernels.
Description
Represent symmetric smoothing kernels:: normal, cosine, triweight, quartic and uniform.
Usage
Kernel(u, type.Ker = "Ker.norm")
Arguments
u |
Data. |
type.Ker |
Type of Kernel. By default normal kernel. |
Details
Ker.norm=dnorm(u) | |
Ker.cos=ifelse(abs(u)<=1,pi/4*(cos(pi*u/2)),0) | |
Ker.epa=ifelse(abs(u)<=1,3/4*(1-u^2),0) | |
Ker.tri=ifelse(abs(u)<=1,35/32*(1-u^2)^3,0) | |
Ker.quar=ifelse(abs(u)<=1,15/16*(1-u^2)^2,0) | |
Ker.unif=ifelse(abs(u)<=1,1/2,0) | |
Type of kernel:
Normal Kernel: Ker.norm |
|
Cosine Kernel: Ker.cos |
|
Epanechnikov Kernel: Ker.epa |
|
Triweight Kernel: Ker.tri |
|
Quartic Kernel:
Ker.quar |
|
Uniform Kernel: Ker.unif |
|
Value
Returns symmetric kernel.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional
data analysis. Springer Series in Statistics, New York.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Examples
y=qnorm(seq(.1,.9,len=100))
a<-Kernel(u=y)
b<-Kernel(type.Ker="Ker.tri",u=y)
c=Ker.cos(y)
[Package fda.usc version 2.1.0 Index]