fregre.glm.vs {fda.usc} | R Documentation |
Variable Selection using Functional Linear Models
Description
Computes functional GLM model between functional covariates
(X^1(t_1),\cdots,X^{q}(t_q))
and non functional covariates
(Z^1,...,Z^p)
with a scalar response Y
.
Usage
fregre.glm.vs(
data = list(),
y,
include = "all",
exclude = "none",
family = gaussian(),
weights = NULL,
basis.x = NULL,
numbasis.opt = FALSE,
dcor.min = 0.1,
alpha = 0.05,
par.model,
xydist,
trace = FALSE
)
Arguments
data |
List that containing the variables in the model.
"df" element is a data.frame containing the response and scalar covariates
(numeric and factors variables are allowed). Functional covariates of class
|
y |
Caracter string with the name of the scalar response variable. |
include |
vector with the name of variables to use. By default |
exclude |
vector with the name of variables to not use. By default |
family |
a description of the error distribution and link function to
be used in the model. This can be a character string naming a family
function, a family function or the result of a call to a family function.
(See |
weights |
weights |
basis.x |
Basis parameter options
|
numbasis.opt |
Logical, if |
dcor.min |
Threshold for a variable to be entered into the model. X is discarded
if the distance correlation |
alpha |
Alpha value for testing the independence among covariate X and residual
e in previous steps. By default is |
par.model |
Model parameters. |
xydist |
List with the inner distance matrices of each variable (all potential covariates and the response). |
trace |
Interactive Tracing and Debugging of Call. |
Details
This function is an extension of the functional generalized spectral additive
regression models: fregre.glm
where the E[Y|X,Z]
is related to the
linear prediction \eta
via a link function g(\cdot)
.
E[Y|X,Z]=\eta=g^{-1}(\alpha+\sum_{j=1}^{p}\beta_{j}Z^{j}+\sum_{k=1}^{q}\frac{1}{\sqrt{T_k}}\int_{T_k}{X^{k}(t)\beta_{k}(t)dt})
where Z=\left[ Z^1,\cdots,Z^p \right]
are the
non functional covariates and X(t)=\left[ X^{1}(t_1),\cdots,X^{q}(t_q)
\right]
are the functional ones.
Value
Return an object corresponding to the estimated additive mdoel using
the selected variables (ame output as thefregre.glm
function) and the following elements:
gof
, the goodness of fit for each step of VS algorithm.i.predictor
,vector
with 1 if the variable is selected, 0 otherwise.ipredictor
,vector
with the name of selected variables (in order of selection)dcor
, the value of distance correlation for each potential covariate and the residual of the model in each step.
Note
If the formula only contains a non functional explanatory variables (multivariate covariates),
the function compute a standard glm
procedure.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo-de la Fuente manuel.oviedo@udc.es
References
Febrero-Bande, M., Gonz\'alez-Manteiga, W. and Oviedo de la Fuente, M. Variable selection in functional additive regression models, (2018). Computational Statistics, 1-19. DOI: doi:10.1007/s00180-018-0844-5
See Also
See Also as: predict.fregre.glm
and summary.glm
.
Alternative methods: fregre.glm
, fregre.glm
and fregre.gsam.vs
.
Examples
## Not run:
data(tecator)
x=tecator$absorp.fdata
x1 <- fdata.deriv(x)
x2 <- fdata.deriv(x,nderiv=2)
y=tecator$y$Fat
xcat0 <- cut(rnorm(length(y)),4)
xcat1 <- cut(tecator$y$Protein,4)
xcat2 <- cut(tecator$y$Water,4)
ind <- 1:165
dat <- data.frame("Fat"=y, x1$data, xcat1, xcat2)
ldat <- ldata("df"=dat[ind,],"x"=x[ind,],"x1"=x1[ind,],"x2"=x2[ind,])
# 3 functionals (x,x1,x2), 3 factors (xcat0, xcat1, xcat2)
# and 100 scalars (impact poitns of x1)
# Time consuming
res.glm0 <- fregre.glm.vs(data=ldat,y="Fat",numbasis.opt=T) # All the covariates
summary(res.glm0)
res.glm0$ipredictors
res.glm0$i.predictor
res.glm1 <- fregre.glm.vs(data=ldat,y="Fat") # All the covariates
summary(res.glm1)
res.glm1$ipredictors
covar <- c("xcat0","xcat1","xcat2","x","x1","x2")
res.glm2 <- fregre.glm.vs(data=ldat, y="Fat", include=covar)
summary(res.glm2)
res.glm2$ipredictors
res.glm2$i.predictor
res.glm3 <- fregre.glm.vs(data=ldat,y="Fat",
basis.x=c("type.basis"="pc","numbasis"=2))
summary(res.glm3)
res.glm3$ipredictors
res.glm4 <- fregre.glm.vs(data=ldat,y="Fat",include=covar,
basis.x=c("type.basis"="pc","numbasis"=5),numbasis.opt=T)
summary(res.glm4)
res.glm4$ipredictors
lpc <- list("x"=create.pc.basis(ldat$x,1:4)
,"x1"=create.pc.basis(ldat$x1,1:3)
,"x2"=create.pc.basis(ldat$x2,1:4))
res.glm5 <- fregre.glm.vs(data=ldat,y="Fat",basis.x=lpc)
summary(res.glm5)
res.glm5 <- fregre.glm.vs(data=ldat,y="Fat",basis.x=lpc,numbasis.opt=T)
summary(res.glm5)
bsp <- create.fourier.basis(ldat$x$rangeval,7)
lbsp <- list("x"=bsp,"x1"=bsp,"x2"=bsp)
res.glm6 <- fregre.glm.vs(data=ldat,y="Fat",basis.x=lbsp)
summary(res.glm6)
# Prediction like fregre.glm()
newldat <- ldata("df"=dat[-ind,],"x"=x[-ind,],"x1"=x1[-ind,],
"x2"=x2[-ind,])
pred.glm1 <- predict(res.glm1,newldat)
pred.glm2 <- predict(res.glm2,newldat)
pred.glm3 <- predict(res.glm3,newldat)
pred.glm4 <- predict(res.glm4,newldat)
pred.glm5 <- predict(res.glm5,newldat)
pred.glm6 <- predict(res.glm6,newldat)
plot(dat[-ind,"Fat"],pred.glm1)
points(dat[-ind,"Fat"],pred.glm2,col=2)
points(dat[-ind,"Fat"],pred.glm3,col=3)
points(dat[-ind,"Fat"],pred.glm4,col=4)
points(dat[-ind,"Fat"],pred.glm5,col=5)
points(dat[-ind,"Fat"],pred.glm6,col=6)
pred2meas(newldat$df$Fat,pred.glm1)
pred2meas(newldat$df$Fat,pred.glm2)
pred2meas(newldat$df$Fat,pred.glm3)
pred2meas(newldat$df$Fat,pred.glm4)
pred2meas(newldat$df$Fat,pred.glm5)
pred2meas(newldat$df$Fat,pred.glm6)
## End(Not run)