fregre.igls {fda.usc} | R Documentation |
Fit of Functional Generalized Least Squares Model Iteratively
Description
This function fits iteratively a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.
Begin with a preliminary estimation of
\hat{\theta}=\theta_0
(for instance,\theta_0=0
). Compute\hat{W}
.Estimate
b_\Sigma =(Z'\hat{W}Z)^{-1}Z'\hat{W}y
Based on the residuals,
\hat{e}=\left(y-Zb_\Sigma \right)
, update\hat{\theta}=\rho\left({\hat{e}}\right)
where\rho
depends on the dependence structure chosen.Repeats steps 2 and 3 until convergence (small changes in
b_\Sigma
and/or\hat{\theta}
).
Usage
fregre.igls(
formula,
data,
basis.x = NULL,
basis.b = NULL,
correlation,
maxit = 100,
rn,
lambda,
weights = rep(1, n),
control,
...
)
Arguments
formula |
A two-sided linear formula object describing the
model, with the response on the left of a |
data |
An optional data frame containing the variables named in
|
basis.x |
List of basis for functional explanatory data estimation. |
basis.b |
List of basis for |
correlation |
List describing the correlation structure. Defaults to
|
maxit |
Number of maximum of interactions. |
rn |
List of Ridge parameter. |
lambda |
List of Roughness penalty parameter. |
weights |
weights |
control |
Control parameters. |
... |
Further arguments passed to or from other methods. |
Value
An object of class "fregre.igls"
representing the functional linear model
fit with temporal dependence errors.
Beside, the class(z) is similar to "fregre.lm" plus the following objects:
corStruct Fitted AR or ARIMA model.
References
Oviedo de la Fuente, M., Febrero-Bande, M., Pilar Munoz, and Dominguez, A. (2018). Predicting seasonal influenza transmission using functional regression models with temporal dependence. PloS one, 13(4), e0194250. doi:10.1371/journal.pone.0194250
Examples
## Not run:
data(tecator)
x=tecator$absorp.fdata
x.d2<-fdata.deriv(x,nderiv=)
tt<-x[["argvals"]]
dataf=as.data.frame(tecator$y)
# plot the response
plot(ts(tecator$y$Fat))
ldata=list("df"=dataf,"x.d2"=x.d2)
res.gls=fregre.igls(Fat~x.d2,data=ldata,
correlation=list("cor.ARMA"=list()),
control=list("p"=1))
res.gls
res.gls$corStruct
## End(Not run)