predict.classif {fda.usc} | R Documentation |
Predicts from a fitted classif object.
Description
Classifier of functional data by kernel method using functional data object
of class classif
. Returns the predicted classes using a previously trained model.
Usage
## S3 method for class 'classif'
predict(object, new.fdataobj = NULL, type = "class", ...)
Arguments
object |
Object |
new.fdataobj |
New functional explanatory data of |
type |
Type of prediction ("class or probability of each group membership"). |
... |
Further arguments passed to or from other methods. |
Value
If type="class", produces a vector of predictions. If type="probs", a list with the following components is returned:
-
group.pred
the vector of predictions. -
prob.group
the matrix of predicted probability by factor level.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Ferraty, F. and Vieu, P. (2006). Nonparametricc functional data analysis. Springer Series in Statistics, New York.
Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer, New York.
See Also
See also classif.np
classif.glm
,
classif.gsam
and classif.gkam
.
Examples
## Not run:
data(phoneme)
mlearn <- phoneme[["learn"]][1:100]
glearn <- phoneme[["classlearn"]][1:100]
# ESTIMATION knn
out1 <- classif.knn(glearn, mlearn, knn = 3)
summary(out1)
# PREDICTION knn
mtest <- phoneme[["test"]][1:100]
gtest <- phoneme[["classtest"]][1:100]
pred1 <- predict(out1, mtest)
table(pred1, gtest)
# ESTIMATION kernel
h <- 2^(0:5)
# using metric distances computed in classif.knn
out2 <- classif.kernel(glearn, mlearn, h = h, metric = out1$mdist)
summary(out2)
# PREDICTION kernel
pred2 <- predict(out2,mtest)
table(pred2,gtest)
## End(Not run)