cond.quantile {fda.usc} | R Documentation |
Conditional quantile
Description
Computes the quantile for conditional distribution function.
Usage
cond.quantile(
qua = 0.5,
fdata0,
fdataobj,
y,
fn,
a = min(y),
b = max(y),
tol = 10^floor(log10(max(y) - min(y)) - 3),
iter.max = 100,
...
)
Arguments
qua |
Quantile value, by default the median ( |
fdata0 |
Conditional functional explanatory data of |
fdataobj |
Functional explanatory data of |
y |
Scalar Response. |
fn |
Conditional distribution function. |
a |
Lower limit. |
b |
Upper limit. |
tol |
Tolerance. |
iter.max |
Maximum iterations allowed, by default |
... |
Further arguments passed to or from other methods. |
Value
Return the quantile for conditional distribution function.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
See Also
See Also as: cond.F
and cond.mode
.
Examples
## Not run:
n= 100
t= seq(0,1,len=101)
beta = t*sin(2*pi*t)^2
x = matrix(NA, ncol=101, nrow=n)
y=numeric(n)
x0<-rproc2fdata(n,seq(0,1,len=101),sigma="wiener")
x1<-rproc2fdata(n,seq(0,1,len=101),sigma=0.1)
x<-x0*3+x1
fbeta = fdata(beta,t)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)
prx=x[1:50];pry=y[1:50]
ind=50+1;ind2=51:60
pr0=x[ind];pr10=x[ind2]
ndist=161
gridy=seq(-1.598069,1.598069, len=ndist)
ind4=5
y0 = gridy[ind4]
# Conditional median
med=cond.quantile(qua=0.5,fdata0=pr0,fdataobj=prx,y=pry,fn=cond.F,h=1)
# Conditional CI 95% conditional
lo=cond.quantile(qua=0.025,fdata0=pr0,fdataobj=prx,y=pry,fn=cond.F,h=1)
up=cond.quantile(qua=0.975,fdata0=pr0,fdataobj=prx,y=pry,fn=cond.F,h=1)
print(c(lo,med,up))
## End(Not run)
[Package fda.usc version 2.1.0 Index]