| semimetric.basis {fda.usc} | R Documentation |
Proximities between functional data
Description
Approximates semi-metric distances for functional data of class fdata
or fd.
Usage
semimetric.basis(
fdata1,
fdata2 = fdata1,
nderiv = 0,
type.basis1 = NULL,
nbasis1 = NULL,
type.basis2 = type.basis1,
nbasis2 = NULL,
...
)
Arguments
fdata1 |
Functional data 1 or curve 1. |
fdata2 |
Functional data 2 or curve 2. |
nderiv |
Order of derivation, used in |
type.basis1 |
Type of Basis for |
nbasis1 |
Number of Basis for |
type.basis2 |
Type of Basis for |
nbasis2 |
Number of Basis for |
... |
Further arguments passed to or from other methods. |
Details
Approximates semi-metric distances for functional data of two fd
class objects. If functional data are not functional fd class, the
semimetric.basis function creates a basis to represent the functional
data, by default is used create.bspline.basis and the
fdata class object is converted to fd class using the
Data2fd.
The function calculates distances between the
derivative of order nderiv of curves using deriv.fd
function.
Value
Returns a proximities matrix between functional data.
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
See Also
See also metric.lp, semimetric.NPFDA
and deriv.fd
Examples
## Not run:
data(phoneme)
DATA1<-phoneme$learn[c(30:50,210:230)]
DATA2<-phoneme$test[231:250]
a1=semimetric.basis(DATA1,DATA2)
a2=semimetric.basis(DATA1,DATA2,type.basis1="fourier",
nbasis1=11, type.basis2="fourier",nbasis2=11)
fd1 <- fdata2fd(DATA1)
fd2 <- fdata2fd(DATA2)
a3=semimetric.basis(fd1,fd2)
a4=semimetric.basis(fd1,fd2,nderiv=1)
## End(Not run)