semimetric.basis {fda.usc} | R Documentation |
Proximities between functional data
Description
Approximates semi-metric distances for functional data of class fdata
or fd
.
Usage
semimetric.basis(
fdata1,
fdata2 = fdata1,
nderiv = 0,
type.basis1 = NULL,
nbasis1 = NULL,
type.basis2 = type.basis1,
nbasis2 = NULL,
...
)
Arguments
fdata1 |
Functional data 1 or curve 1. |
fdata2 |
Functional data 2 or curve 2. |
nderiv |
Order of derivation, used in |
type.basis1 |
Type of Basis for |
nbasis1 |
Number of Basis for |
type.basis2 |
Type of Basis for |
nbasis2 |
Number of Basis for |
... |
Further arguments passed to or from other methods. |
Details
Approximates semi-metric distances for functional data of two fd
class objects. If functional data are not functional fd
class, the
semimetric.basis
function creates a basis to represent the functional
data, by default is used create.bspline.basis
and the
fdata
class object is converted to fd
class using the
Data2fd
.
The function calculates distances between the
derivative of order nderiv
of curves using deriv.fd
function.
Value
Returns a proximities matrix between functional data.
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
See Also
See also metric.lp
, semimetric.NPFDA
and deriv.fd
Examples
## Not run:
data(phoneme)
DATA1<-phoneme$learn[c(30:50,210:230)]
DATA2<-phoneme$test[231:250]
a1=semimetric.basis(DATA1,DATA2)
a2=semimetric.basis(DATA1,DATA2,type.basis1="fourier",
nbasis1=11, type.basis2="fourier",nbasis2=11)
fd1 <- fdata2fd(DATA1)
fd2 <- fdata2fd(DATA2)
a3=semimetric.basis(fd1,fd2)
a4=semimetric.basis(fd1,fd2,nderiv=1)
## End(Not run)