fregre.np {fda.usc} | R Documentation |
Functional regression with scalar response using non-parametric kernel estimation
Description
Computes functional regression between functional explanatory variables and scalar response using kernel estimation.
Usage
fregre.np(
fdataobj,
y,
h = NULL,
Ker = AKer.norm,
metric = metric.lp,
type.S = S.NW,
par.S = list(w = 1),
...
)
Arguments
fdataobj |
|
y |
Scalar response with length |
h |
Bandwidth, |
Ker |
Type of asymmetric kernel used, by default asymmetric normal kernel. |
metric |
Metric function, by default |
type.S |
Type of smothing matrix |
par.S |
List of parameters for |
... |
Arguments to be passed for |
Details
The non-parametric functional regression model can be written as follows
where the unknown smooth real function is
estimated using kernel estimation by means of
where is an
kernel function (see
Ker
argument), h
is the smoothing
parameter and is a metric or a semi-metric (see
metric
argument).
The distance between curves is calculated using the metric.lp
although any other semimetric could be used (see
semimetric.basis
or semimetric.NPFDA
functions).
The kernel is applied to a metric or semi-metrics that provides non-negative
values, so it is common to use asymmetric kernels. Different asymmetric
kernels can be used, see Kernel.asymmetric
.
Value
Return:
-
call The matched call.
-
fitted.values Estimated scalar response.
-
H Hat matrix.
-
residuals
y
minusfitted values
. -
df.residual The residual degrees of freedom.
-
r2 Coefficient of determination.
-
sr2 Residual variance.
-
y Response.
-
fdataobj Functional explanatory data.
-
mdist Distance matrix between
x
andnewx
. -
Ker Asymmetric kernel used.
-
h.opt smoothing parameter or' bandwidth.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
References
Ferraty, F. and Vieu, P. (2006). Nonparametric functional
data analysis. Springer Series in Statistics, New York.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
See Also
See Also as: fregre.np.cv
,
summary.fregre.fd
and predict.fregre.fd
.
Alternative method: fregre.basis
,cand fregre.pc
.
Examples
## Not run:
data(tecator)
absorp=tecator$absorp.fdata
ind=1:129
x=absorp[ind,]
y=tecator$y$Fat[ind]
res.np=fregre.np(x,y,Ker=AKer.epa)
summary(res.np)
res.np2=fregre.np(x,y,Ker=AKer.tri)
summary(res.np2)
# with other semimetrics.
res.pca1=fregre.np(x,y,Ker=AKer.tri,metri=semimetric.pca,q=1)
summary(res.pca1)
res.deriv=fregre.np(x,y,metri=semimetric.deriv)
summary(res.deriv)
x.d2=fdata.deriv(x,nderiv=1,method="fmm",class.out='fdata')
res.deriv2=fregre.np(x.d2,y)
summary(res.deriv2)
x.d3=fdata.deriv(x,nderiv=1,method="bspline",class.out='fdata')
res.deriv3=fregre.np(x.d3,y)
summary(res.deriv3)
## End(Not run)