predict.classif.DD {fda.usc} | R Documentation |
Predicts from a fitted classif.DD object.
Description
Classifier of functional (and multivariate) data by DD–classifier.
Usage
## S3 method for class 'classif.DD'
predict(object, new.fdataobj = NULL, type = "class", ...)
Arguments
object |
Object |
new.fdataobj |
By default, new p functional explanatory dataset or new
mulitvariate data of |
type |
!=”predictive”, for each row of data shows the probability of each group membership. |
... |
Further arguments passed to or from other methods. |
Details
Returns the groups or classes predicted using a previously trained model.
Value
-
group.predVector of groups or classes predicted
-
prob.groupFor each functional data shows the probability of each group membership.
Author(s)
Febrero-Bande, M., and Oviedo de la Fuente, M.
References
Li, J., P.C., Cuesta-Albertos, J.A. and Liu, R. DD–Classifier: Nonparametric Classification Procedure Based on DD-plot. Journal of the American Statistical Association (2012), Vol. 107, 737–753.
See Also
See also classif.DD
.
Examples
## Not run:
# DD-classif for multivariate data
data(iris)
iris<-iris[1:100,]
ii<-sample(1:100,80)
group.train<-factor(iris[ii,5])
x.train<-iris[ii,1:4]
out1=classif.DD(group.train,x.train,depth="MhD",classif="lda")
out2=classif.DD(group.train,x.train,depth="MhD",classif="glm")
summary(out1)
summary(out2)
x.test<-iris[-ii,1:4]
pred1=predict(out1,x.test)
pred2=predict(out2,x.test)
group.test<-iris[-ii,5]
table(pred1,group.test)
table(pred2,group.test)
# DD-classif for Functional data
data(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-phoneme[["classlearn"]]
# ESTIMATION
out1=classif.DD(glearn,mlearn,depth="FM",classif="glm")
summary(out1)
# PREDICTION
mtest<-phoneme[["test"]]
gtest<-phoneme[["classtest"]]
pred1=predict(out1,mtest)
table(pred1,gtest)
## End(Not run)