depth.mdata {fda.usc} | R Documentation |
Provides the depth measure for multivariate data
Description
Compute measure of centrality of the multivariate data. Type of depth function: simplicial depth (SD), Mahalanobis depth (MhD), Random Half–Space depth (HS), random projection depth (RP) and Likelihood Depth (LD).
Usage
mdepth.LD(x, xx = x, metric = metric.dist, h = NULL, scale = FALSE, ...)
mdepth.HS(x, xx = x, proj = 50, scale = FALSE, xeps = 1e-15, random = FALSE)
mdepth.RP(x, xx = x, proj = 50, scale = FALSE)
mdepth.MhD(x, xx = x, scale = FALSE)
mdepth.KFSD(x, xx = x, trim = 0.25, h = NULL, scale = FALSE, draw = FALSE)
mdepth.FSD(x, xx = x, trim = 0.25, scale = FALSE, draw = FALSE)
mdepth.FM(x, xx = x, scale = FALSE, dfunc = "TD1")
mdepth.TD(x, xx = x, xeps = 1e-15, scale = FALSE)
mdepth.SD(x, xx = NULL, scale = FALSE)
Arguments
x |
is a set of points, a d-column matrix. |
xx |
is a d-dimension multivariate reference sample (a d-column matrix)
where |
metric |
Metric function, by default |
h |
Bandwidth, |
scale |
=TRUE, scale the depth, see scale. |
... |
Further arguments passed to or from other methods. |
proj |
are the directions for random projections, by default 500 random
projections generated from a scaled |
xeps |
Accuracy. The left limit of the empirical distribution function. |
random |
=TRUE for random projections. =FALSE for deterministic projections. |
trim |
The alpha of the trimming. |
draw |
=TRUE, draw the curves, the sample median and trimmed mean. |
dfunc |
type of univariate depth function used inside depth function:
"FM1" refers to the original Fraiman and Muniz univariate depth (default),
"TD1" Tukey (Halfspace),"Liu1" for simplical depth, "LD1" for Likelihood
depth and "MhD1" for Mahalanobis 1D depth. Also, any user function
fulfilling the following pattern |
Details
Type of depth measures:
The
mdepth.SD
calculates the simplicial depth (HD) of the points inx
w.r.t.xx
(for bivariate data).The
mdepth.HS
function calculates the random half–space depth (HS) of the points inx
w.r.t.xx
based on random projectionsproj
.The
mdepth.MhD
function calculates the Mahalanobis depth (MhD) of the points inx
w.r.t.xx
.The
mdepth.RP
calculates the random' projection depth (RP) of the points inx
w.r.t.xx
based on random projectionsproj
.The
mdepth.LD
calculates the Likelihood depth (LD) of the points inx
w.r.t.xx
.The
mdepth.TD
function provides the Tukey depth measure for multivariate data.
Value
-
lmed Index of deepest element
median
ofxx
. -
ltrim Index of set of points
x
with trimmed meanmtrim
. -
dep Depth of each point
x
w.r.t.xx
. -
proj The projection value of each point on set of points.
-
xis a set of points to be evaluated.
-
xx a reference sample
-
name Name of depth method
Author(s)
mdepth.RP
, mdepth.MhD
and
mdepth.HS
are versions created by Manuel Febrero Bande and
Manuel Oviedo de la Fuente of the original version created by Jun Li, Juan
A. Cuesta Albertos and Regina Y. Liu for polynomial classifier.
References
Liu, R. Y., Parelius, J. M., and Singh, K. (1999). Multivariate analysis by data depth: descriptive statistics, graphics and inference,(with discussion and a rejoinder by Liu and Singh). The Annals of Statistics, 27(3), 783-858.
See Also
Functional depth functions: depth.FM
,
depth.mode
, depth.RP
, depth.RPD
and depth.RT
.
Examples
## Not run:
data(iris)
group<-iris[,5]
x<-iris[,1:2]
MhD<-mdepth.MhD(x)
PD<-mdepth.RP(x)
HD<-mdepth.HS(x)
SD<-mdepth.SD(x)
x.setosa<-x[group=="setosa",]
x.versicolor<-x[group=="versicolor",]
x.virginica<-x[group=="virginica",]
d1<-mdepth.SD(x,x.setosa)$dep
d2<-mdepth.SD(x,x.versicolor)$dep
d3<-mdepth.SD(x,x.virginica)$dep
## End(Not run)