metric.hausdorff {fda.usc} | R Documentation |
Compute the Hausdorff distances between two curves.
Description
Hausdorff distance is the greatest of all the distances from a point in one curve to the closest point in the other curve (been closest the euclidean distance).
Usage
metric.hausdorff(fdata1, fdata2 = fdata1)
Arguments
fdata1 |
Curves 1 of |
fdata2 |
Curves 2 of |
Details
Let G(X)=\left\{ (t,X(t))\in R^2 \right\}
and
G(Y)=\left\{(t,Y(t))\in R^2\right\}
be two
graphs of the considered curves X
and Y
respectively, the
Hausdorff distance d_H(X, Y)
is defined as,
d_H(X,Y)=max\left\{ sup_{x\in G(X)} inf_{y\in G(Y)} d_2(x,y),
sup_{y\in G(Y)} inf_{x\in G(X)}d_2(x,y)\right\},
where d_2(x,y)
is the euclidean distance, see metric.lp.
Author(s)
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Examples
## Not run:
data(poblenou)
nox<-poblenou$nox[1:6]
# Hausdorff vs maximum distance
out1<-metric.hausdorff(nox)
out2<-metric.lp(nox,lp=0)
out1
out2
par(mfrow=c(1,3))
plot(nox)
plot(hclust(as.dist(out1)))
plot(hclust(as.dist(out2)))
## End(Not run)