Tensors and Neural Networks with 'GPU' Acceleration


[Up] [Top]

Documentation for package ‘torch’ version 0.13.0

Help Pages

A B C D E G I J L N O S T U W

-- A --

as_array Converts to array
AutogradContext Class representing the context.
autograd_backward Computes the sum of gradients of given tensors w.r.t. graph leaves.
autograd_function Records operation history and defines formulas for differentiating ops.
autograd_grad Computes and returns the sum of gradients of outputs w.r.t. the inputs.
autograd_set_grad_mode Set grad mode

-- B --

backends_cudnn_is_available CuDNN is available
backends_cudnn_version CuDNN version
backends_mkldnn_is_available MKLDNN is available
backends_mkl_is_available MKL is available
backends_mps_is_available MPS is available
backends_openmp_is_available OpenMP is available
broadcast_all Given a list of values (possibly containing numbers), returns a list where each value is broadcasted based on the following rules:
buffer_from_torch_tensor Creates a tensor from a buffer of memory

-- C --

clone_module Clone a torch module.
Constraint Abstract base class for constraints.
contrib_sort_vertices Contrib sort vertices
cuda_amp_grad_scaler Creates a gradient scaler
cuda_current_device Returns the index of a currently selected device.
cuda_device_count Returns the number of GPUs available.
cuda_empty_cache Empty cache
cuda_get_device_capability Returns the major and minor CUDA capability of 'device'
cuda_get_rng_state RNG state management
cuda_is_available Returns a bool indicating if CUDA is currently available.
cuda_memory_stats Returns a dictionary of CUDA memory allocator statistics for a given device.
cuda_memory_summary Returns a dictionary of CUDA memory allocator statistics for a given device.
cuda_runtime_version Returns the CUDA runtime version
cuda_set_rng_state RNG state management
cuda_synchronize Waits for all kernels in all streams on a CUDA device to complete.

-- D --

dataloader Data loader. Combines a dataset and a sampler, and provides single- or multi-process iterators over the dataset.
dataloader_make_iter Creates an iterator from a DataLoader
dataloader_next Get the next element of a dataloader iterator
dataset Helper function to create an function that generates R6 instances of class 'dataset'
dataset_subset Dataset Subset
Distribution Generic R6 class representing distributions
distr_bernoulli Creates a Bernoulli distribution parameterized by 'probs' or 'logits' (but not both). Samples are binary (0 or 1). They take the value '1' with probability 'p' and '0' with probability '1 - p'.
distr_categorical Creates a categorical distribution parameterized by either 'probs' or 'logits' (but not both).
distr_chi2 Creates a Chi2 distribution parameterized by shape parameter 'df'. This is exactly equivalent to 'distr_gamma(alpha=0.5*df, beta=0.5)'
distr_gamma Creates a Gamma distribution parameterized by shape 'concentration' and 'rate'.
distr_mixture_same_family Mixture of components in the same family
distr_multivariate_normal Gaussian distribution
distr_normal Creates a normal (also called Gaussian) distribution parameterized by 'loc' and 'scale'.
distr_poisson Creates a Poisson distribution parameterized by 'rate', the rate parameter.

-- E --

enumerate Enumerate an iterator
enumerate.dataloader Enumerate an iterator

-- G --

get_install_libs_url Install Torch from files

-- I --

install_torch Install Torch
install_torch_from_file Install Torch from files
is_dataloader Checks if the object is a dataloader
is_nn_buffer Checks if the object is a nn_buffer
is_nn_module Checks if the object is an nn_module
is_nn_parameter Checks if an object is a nn_parameter
is_optimizer Checks if the object is a torch optimizer
is_torch_device Checks if object is a device
is_torch_dtype Check if object is a torch data type
is_torch_layout Check if an object is a torch layout.
is_torch_memory_format Check if an object is a memory format
is_torch_qscheme Checks if an object is a QScheme
is_undefined_tensor Checks if a tensor is undefined
iterable_dataset Creates an iterable dataset

-- J --

jit_compile Compile TorchScript code into a graph
jit_load Loads a 'script_function' or 'script_module' previously saved with 'jit_save'
jit_ops Enable idiomatic access to JIT operators from R.
jit_save Saves a 'script_function' to a path
jit_save_for_mobile Saves a 'script_function' or 'script_module' in bytecode form, to be loaded on a mobile device
jit_scalar Adds the 'jit_scalar' class to the input
jit_trace Trace a function and return an executable 'script_function'.
jit_trace_module Trace a module
jit_tuple Adds the 'jit_tuple' class to the input

-- L --

linalg_cholesky Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.
linalg_cholesky_ex Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.
linalg_cond Computes the condition number of a matrix with respect to a matrix norm.
linalg_det Computes the determinant of a square matrix.
linalg_eig Computes the eigenvalue decomposition of a square matrix if it exists.
linalg_eigh Computes the eigenvalue decomposition of a complex Hermitian or real symmetric matrix.
linalg_eigvals Computes the eigenvalues of a square matrix.
linalg_eigvalsh Computes the eigenvalues of a complex Hermitian or real symmetric matrix.
linalg_householder_product Computes the first 'n' columns of a product of Householder matrices.
linalg_inv Computes the inverse of a square matrix if it exists.
linalg_inv_ex Computes the inverse of a square matrix if it is invertible.
linalg_lstsq Computes a solution to the least squares problem of a system of linear equations.
linalg_matrix_norm Computes a matrix norm.
linalg_matrix_power Computes the 'n'-th power of a square matrix for an integer 'n'.
linalg_matrix_rank Computes the numerical rank of a matrix.
linalg_multi_dot Efficiently multiplies two or more matrices
linalg_norm Computes a vector or matrix norm.
linalg_pinv Computes the pseudoinverse (Moore-Penrose inverse) of a matrix.
linalg_qr Computes the QR decomposition of a matrix.
linalg_slogdet Computes the sign and natural logarithm of the absolute value of the determinant of a square matrix.
linalg_solve Computes the solution of a square system of linear equations with a unique solution.
linalg_solve_triangular Triangular solve
linalg_svd Computes the singular value decomposition (SVD) of a matrix.
linalg_svdvals Computes the singular values of a matrix.
linalg_tensorinv Computes the multiplicative inverse of 'torch_tensordot()'
linalg_tensorsolve Computes the solution 'X' to the system 'torch_tensordot(A, X) = B'.
linalg_vector_norm Computes a vector norm.
load_state_dict Load a state dict file
local_autocast Autocast context manager
local_device Device contexts
local_enable_grad Enable grad
local_no_grad Temporarily modify gradient recording.
local_torch_manual_seed Sets the seed for generating random numbers.
lr_cosine_annealing Set the learning rate of each parameter group using a cosine annealing schedule
lr_lambda Sets the learning rate of each parameter group to the initial lr times a given function. When last_epoch=-1, sets initial lr as lr.
lr_multiplicative Multiply the learning rate of each parameter group by the factor given in the specified function. When last_epoch=-1, sets initial lr as lr.
lr_one_cycle Once cycle learning rate
lr_reduce_on_plateau Reduce learning rate on plateau
lr_scheduler Creates learning rate schedulers
lr_step Step learning rate decay

-- N --

nnf_adaptive_avg_pool1d Adaptive_avg_pool1d
nnf_adaptive_avg_pool2d Adaptive_avg_pool2d
nnf_adaptive_avg_pool3d Adaptive_avg_pool3d
nnf_adaptive_max_pool1d Adaptive_max_pool1d
nnf_adaptive_max_pool2d Adaptive_max_pool2d
nnf_adaptive_max_pool3d Adaptive_max_pool3d
nnf_affine_grid Affine_grid
nnf_alpha_dropout Alpha_dropout
nnf_avg_pool1d Avg_pool1d
nnf_avg_pool2d Avg_pool2d
nnf_avg_pool3d Avg_pool3d
nnf_batch_norm Batch_norm
nnf_bilinear Bilinear
nnf_binary_cross_entropy Binary_cross_entropy
nnf_binary_cross_entropy_with_logits Binary_cross_entropy_with_logits
nnf_celu Celu
nnf_celu_ Celu
nnf_contrib_sparsemax Sparsemax
nnf_conv1d Conv1d
nnf_conv2d Conv2d
nnf_conv3d Conv3d
nnf_conv_tbc Conv_tbc
nnf_conv_transpose1d Conv_transpose1d
nnf_conv_transpose2d Conv_transpose2d
nnf_conv_transpose3d Conv_transpose3d
nnf_cosine_embedding_loss Cosine_embedding_loss
nnf_cosine_similarity Cosine_similarity
nnf_cross_entropy Cross_entropy
nnf_ctc_loss Ctc_loss
nnf_dropout Dropout
nnf_dropout2d Dropout2d
nnf_dropout3d Dropout3d
nnf_elu Elu
nnf_elu_ Elu
nnf_embedding Embedding
nnf_embedding_bag Embedding_bag
nnf_fold Fold
nnf_fractional_max_pool2d Fractional_max_pool2d
nnf_fractional_max_pool3d Fractional_max_pool3d
nnf_gelu Gelu
nnf_glu Glu
nnf_grid_sample Grid_sample
nnf_group_norm Group_norm
nnf_gumbel_softmax Gumbel_softmax
nnf_hardshrink Hardshrink
nnf_hardsigmoid Hardsigmoid
nnf_hardswish Hardswish
nnf_hardtanh Hardtanh
nnf_hardtanh_ Hardtanh
nnf_hinge_embedding_loss Hinge_embedding_loss
nnf_instance_norm Instance_norm
nnf_interpolate Interpolate
nnf_kl_div Kl_div
nnf_l1_loss L1_loss
nnf_layer_norm Layer_norm
nnf_leaky_relu Leaky_relu
nnf_linear Linear
nnf_local_response_norm Local_response_norm
nnf_logsigmoid Logsigmoid
nnf_log_softmax Log_softmax
nnf_lp_pool1d Lp_pool1d
nnf_lp_pool2d Lp_pool2d
nnf_margin_ranking_loss Margin_ranking_loss
nnf_max_pool1d Max_pool1d
nnf_max_pool2d Max_pool2d
nnf_max_pool3d Max_pool3d
nnf_max_unpool1d Max_unpool1d
nnf_max_unpool2d Max_unpool2d
nnf_max_unpool3d Max_unpool3d
nnf_mse_loss Mse_loss
nnf_multilabel_margin_loss Multilabel_margin_loss
nnf_multilabel_soft_margin_loss Multilabel_soft_margin_loss
nnf_multi_head_attention_forward Multi head attention forward
nnf_multi_margin_loss Multi_margin_loss
nnf_nll_loss Nll_loss
nnf_normalize Normalize
nnf_one_hot One_hot
nnf_pad Pad
nnf_pairwise_distance Pairwise_distance
nnf_pdist Pdist
nnf_pixel_shuffle Pixel_shuffle
nnf_poisson_nll_loss Poisson_nll_loss
nnf_prelu Prelu
nnf_relu Relu
nnf_relu6 Relu6
nnf_relu_ Relu
nnf_rrelu Rrelu
nnf_rrelu_ Rrelu
nnf_selu Selu
nnf_selu_ Selu
nnf_sigmoid Sigmoid
nnf_silu Applies the Sigmoid Linear Unit (SiLU) function, element-wise. See 'nn_silu()' for more information.
nnf_smooth_l1_loss Smooth_l1_loss
nnf_softmax Softmax
nnf_softmin Softmin
nnf_softplus Softplus
nnf_softshrink Softshrink
nnf_softsign Softsign
nnf_soft_margin_loss Soft_margin_loss
nnf_tanhshrink Tanhshrink
nnf_threshold Threshold
nnf_threshold_ Threshold
nnf_triplet_margin_loss Triplet_margin_loss
nnf_triplet_margin_with_distance_loss Triplet margin with distance loss
nnf_unfold Unfold
nn_adaptive_avg_pool1d Applies a 1D adaptive average pooling over an input signal composed of several input planes.
nn_adaptive_avg_pool2d Applies a 2D adaptive average pooling over an input signal composed of several input planes.
nn_adaptive_avg_pool3d Applies a 3D adaptive average pooling over an input signal composed of several input planes.
nn_adaptive_log_softmax_with_loss AdaptiveLogSoftmaxWithLoss module
nn_adaptive_max_pool1d Applies a 1D adaptive max pooling over an input signal composed of several input planes.
nn_adaptive_max_pool2d Applies a 2D adaptive max pooling over an input signal composed of several input planes.
nn_adaptive_max_pool3d Applies a 3D adaptive max pooling over an input signal composed of several input planes.
nn_avg_pool1d Applies a 1D average pooling over an input signal composed of several input planes.
nn_avg_pool2d Applies a 2D average pooling over an input signal composed of several input planes.
nn_avg_pool3d Applies a 3D average pooling over an input signal composed of several input planes.
nn_batch_norm1d BatchNorm1D module
nn_batch_norm2d BatchNorm2D
nn_batch_norm3d BatchNorm3D
nn_bce_loss Binary cross entropy loss
nn_bce_with_logits_loss BCE with logits loss
nn_bilinear Bilinear module
nn_buffer Creates a nn_buffer
nn_celu CELU module
nn_contrib_sparsemax Sparsemax activation
nn_conv1d Conv1D module
nn_conv2d Conv2D module
nn_conv3d Conv3D module
nn_conv_transpose1d ConvTranspose1D
nn_conv_transpose2d ConvTranpose2D module
nn_conv_transpose3d ConvTranpose3D module
nn_cosine_embedding_loss Cosine embedding loss
nn_cross_entropy_loss CrossEntropyLoss module
nn_ctc_loss The Connectionist Temporal Classification loss.
nn_dropout Dropout module
nn_dropout2d Dropout2D module
nn_dropout3d Dropout3D module
nn_elu ELU module
nn_embedding Embedding module
nn_embedding_bag Embedding bag module
nn_flatten Flattens a contiguous range of dims into a tensor.
nn_fractional_max_pool2d Applies a 2D fractional max pooling over an input signal composed of several input planes.
nn_fractional_max_pool3d Applies a 3D fractional max pooling over an input signal composed of several input planes.
nn_gelu GELU module
nn_glu GLU module
nn_group_norm Group normalization
nn_gru Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.
nn_hardshrink Hardshwink module
nn_hardsigmoid Hardsigmoid module
nn_hardswish Hardswish module
nn_hardtanh Hardtanh module
nn_hinge_embedding_loss Hinge embedding loss
nn_identity Identity module
nn_init_calculate_gain Calculate gain
nn_init_constant_ Constant initialization
nn_init_dirac_ Dirac initialization
nn_init_eye_ Eye initialization
nn_init_kaiming_normal_ Kaiming normal initialization
nn_init_kaiming_uniform_ Kaiming uniform initialization
nn_init_normal_ Normal initialization
nn_init_ones_ Ones initialization
nn_init_orthogonal_ Orthogonal initialization
nn_init_sparse_ Sparse initialization
nn_init_trunc_normal_ Truncated normal initialization
nn_init_uniform_ Uniform initialization
nn_init_xavier_normal_ Xavier normal initialization
nn_init_xavier_uniform_ Xavier uniform initialization
nn_init_zeros_ Zeros initialization
nn_kl_div_loss Kullback-Leibler divergence loss
nn_l1_loss L1 loss
nn_layer_norm Layer normalization
nn_leaky_relu LeakyReLU module
nn_linear Linear module
nn_log_sigmoid LogSigmoid module
nn_log_softmax LogSoftmax module
nn_lp_pool1d Applies a 1D power-average pooling over an input signal composed of several input planes.
nn_lp_pool2d Applies a 2D power-average pooling over an input signal composed of several input planes.
nn_lstm Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.
nn_margin_ranking_loss Margin ranking loss
nn_max_pool1d MaxPool1D module
nn_max_pool2d MaxPool2D module
nn_max_pool3d Applies a 3D max pooling over an input signal composed of several input planes.
nn_max_unpool1d Computes a partial inverse of 'MaxPool1d'.
nn_max_unpool2d Computes a partial inverse of 'MaxPool2d'.
nn_max_unpool3d Computes a partial inverse of 'MaxPool3d'.
nn_module Base class for all neural network modules.
nn_module_dict Container that allows named values
nn_module_list Holds submodules in a list.
nn_mse_loss MSE loss
nn_multihead_attention MultiHead attention
nn_multilabel_margin_loss Multilabel margin loss
nn_multilabel_soft_margin_loss Multi label soft margin loss
nn_multi_margin_loss Multi margin loss
nn_nll_loss Nll loss
nn_pairwise_distance Pairwise distance
nn_parameter Creates an 'nn_parameter'
nn_poisson_nll_loss Poisson NLL loss
nn_prelu PReLU module
nn_prune_head Prune top layer(s) of a network
nn_relu ReLU module
nn_relu6 ReLu6 module
nn_rnn RNN module
nn_rrelu RReLU module
nn_selu SELU module
nn_sequential A sequential container
nn_sigmoid Sigmoid module
nn_silu Applies the Sigmoid Linear Unit (SiLU) function, element-wise. The SiLU function is also known as the swish function.
nn_smooth_l1_loss Smooth L1 loss
nn_softmax Softmax module
nn_softmax2d Softmax2d module
nn_softmin Softmin
nn_softplus Softplus module
nn_softshrink Softshrink module
nn_softsign Softsign module
nn_soft_margin_loss Soft margin loss
nn_tanh Tanh module
nn_tanhshrink Tanhshrink module
nn_threshold Threshold module
nn_triplet_margin_loss Triplet margin loss
nn_triplet_margin_with_distance_loss Triplet margin with distance loss
nn_unflatten Unflattens a tensor dim expanding it to a desired shape. For use with [nn_sequential.
nn_upsample Upsample module
nn_utils_clip_grad_norm_ Clips gradient norm of an iterable of parameters.
nn_utils_clip_grad_value_ Clips gradient of an iterable of parameters at specified value.
nn_utils_rnn_pack_padded_sequence Packs a Tensor containing padded sequences of variable length.
nn_utils_rnn_pack_sequence Packs a list of variable length Tensors
nn_utils_rnn_pad_packed_sequence Pads a packed batch of variable length sequences.
nn_utils_rnn_pad_sequence Pad a list of variable length Tensors with 'padding_value'
nn_utils_weight_norm nn_utils_weight_norm

-- O --

optimizer Creates a custom optimizer
optim_adadelta Adadelta optimizer
optim_adagrad Adagrad optimizer
optim_adam Implements Adam algorithm.
optim_adamw Implements AdamW algorithm
optim_asgd Averaged Stochastic Gradient Descent optimizer
optim_lbfgs LBFGS optimizer
optim_required Dummy value indicating a required value.
optim_rmsprop RMSprop optimizer
optim_rprop Implements the resilient backpropagation algorithm.
optim_sgd SGD optimizer

-- S --

sampler Creates a new Sampler
set_autocast Autocast context manager

-- T --

tensor_dataset Dataset wrapping tensors.
threads Number of threads
torch_abs Abs
torch_absolute Absolute
torch_acos Acos
torch_acosh Acosh
torch_adaptive_avg_pool1d Adaptive_avg_pool1d
torch_add Add
torch_addbmm Addbmm
torch_addcdiv Addcdiv
torch_addcmul Addcmul
torch_addmm Addmm
torch_addmv Addmv
torch_addr Addr
torch_allclose Allclose
torch_amax Amax
torch_amin Amin
torch_angle Angle
torch_arange Arange
torch_arccos Arccos
torch_arccosh Arccosh
torch_arcsin Arcsin
torch_arcsinh Arcsinh
torch_arctan Arctan
torch_arctanh Arctanh
torch_argmax Argmax
torch_argmin Argmin
torch_argsort Argsort
torch_asin Asin
torch_asinh Asinh
torch_as_strided As_strided
torch_atan Atan
torch_atan2 Atan2
torch_atanh Atanh
torch_atleast_1d Atleast_1d
torch_atleast_2d Atleast_2d
torch_atleast_3d Atleast_3d
torch_avg_pool1d Avg_pool1d
torch_baddbmm Baddbmm
torch_bartlett_window Bartlett_window
torch_bernoulli Bernoulli
torch_bincount Bincount
torch_bitwise_and Bitwise_and
torch_bitwise_not Bitwise_not
torch_bitwise_or Bitwise_or
torch_bitwise_xor Bitwise_xor
torch_blackman_window Blackman_window
torch_block_diag Block_diag
torch_bmm Bmm
torch_bool Torch data types
torch_broadcast_tensors Broadcast_tensors
torch_bucketize Bucketize
torch_can_cast Can_cast
torch_cartesian_prod Cartesian_prod
torch_cat Cat
torch_cdist Cdist
torch_cdouble Torch data types
torch_ceil Ceil
torch_celu Celu
torch_celu_ Celu_
torch_cfloat Torch data types
torch_cfloat128 Torch data types
torch_cfloat32 Torch data types
torch_cfloat64 Torch data types
torch_chain_matmul Chain_matmul
torch_chalf Torch data types
torch_channels_last_format Memory format
torch_channel_shuffle Channel_shuffle
torch_cholesky Cholesky
torch_cholesky_inverse Cholesky_inverse
torch_cholesky_solve Cholesky_solve
torch_chunk Chunk
torch_clamp Clamp
torch_clip Clip
torch_clone Clone
torch_combinations Combinations
torch_complex Complex
torch_conj Conj
torch_contiguous_format Memory format
torch_conv1d Conv1d
torch_conv2d Conv2d
torch_conv3d Conv3d
torch_conv_tbc Conv_tbc
torch_conv_transpose1d Conv_transpose1d
torch_conv_transpose2d Conv_transpose2d
torch_conv_transpose3d Conv_transpose3d
torch_cos Cos
torch_cosh Cosh
torch_cosine_similarity Cosine_similarity
torch_count_nonzero Count_nonzero
torch_cross Cross
torch_cummax Cummax
torch_cummin Cummin
torch_cumprod Cumprod
torch_cumsum Cumsum
torch_deg2rad Deg2rad
torch_dequantize Dequantize
torch_det Det
torch_device Create a Device object
torch_diag Diag
torch_diagflat Diagflat
torch_diagonal Diagonal
torch_diag_embed Diag_embed
torch_diff Computes the n-th forward difference along the given dimension.
torch_digamma Digamma
torch_dist Dist
torch_div Div
torch_divide Divide
torch_dot Dot
torch_double Torch data types
torch_dstack Dstack
torch_dtype Torch data types
torch_eig Eig
torch_einsum Einsum
torch_empty Empty
torch_empty_like Empty_like
torch_empty_strided Empty_strided
torch_eq Eq
torch_equal Equal
torch_erf Erf
torch_erfc Erfc
torch_erfinv Erfinv
torch_exp Exp
torch_exp2 Exp2
torch_expm1 Expm1
torch_eye Eye
torch_fft_fft Fft
torch_fft_fftfreq fftfreq
torch_fft_ifft Ifft
torch_fft_irfft Irfft
torch_fft_rfft Rfft
torch_finfo Floating point type info
torch_fix Fix
torch_flatten Flatten
torch_flip Flip
torch_fliplr Fliplr
torch_flipud Flipud
torch_float Torch data types
torch_float16 Torch data types
torch_float32 Torch data types
torch_float64 Torch data types
torch_floor Floor
torch_floor_divide Floor_divide
torch_fmod Fmod
torch_frac Frac
torch_full Full
torch_full_like Full_like
torch_gather Gather
torch_gcd Gcd
torch_ge Ge
torch_generator Create a Generator object
torch_geqrf Geqrf
torch_ger Ger
torch_get_default_dtype Gets and sets the default floating point dtype.
torch_get_num_interop_threads Number of threads
torch_get_num_threads Number of threads
torch_get_rng_state RNG state management
torch_greater Greater
torch_greater_equal Greater_equal
torch_gt Gt
torch_half Torch data types
torch_hamming_window Hamming_window
torch_hann_window Hann_window
torch_heaviside Heaviside
torch_histc Histc
torch_hstack Hstack
torch_hypot Hypot
torch_i0 I0
torch_iinfo Integer type info
torch_imag Imag
torch_index Index torch tensors
torch_index_put Modify values selected by 'indices'.
torch_index_put_ In-place version of 'torch_index_put'.
torch_index_select Index_select
torch_install_path A simple exported version of install_path Returns the torch installation path.
torch_int Torch data types
torch_int16 Torch data types
torch_int32 Torch data types
torch_int64 Torch data types
torch_int8 Torch data types
torch_inverse Inverse
torch_isclose Isclose
torch_isfinite Isfinite
torch_isinf Isinf
torch_isnan Isnan
torch_isneginf Isneginf
torch_isposinf Isposinf
torch_isreal Isreal
torch_istft Istft
torch_is_complex Is_complex
torch_is_floating_point Is_floating_point
torch_is_installed Verifies if torch is installed
torch_is_nonzero Is_nonzero
torch_kaiser_window Kaiser_window
torch_kron Kronecker product
torch_kthvalue Kthvalue
torch_layout Creates the corresponding layout
torch_lcm Lcm
torch_le Le
torch_lerp Lerp
torch_less Less
torch_less_equal Less_equal
torch_lgamma Lgamma
torch_linspace Linspace
torch_load Loads a saved object
torch_log Log
torch_log10 Log10
torch_log1p Log1p
torch_log2 Log2
torch_logaddexp Logaddexp
torch_logaddexp2 Logaddexp2
torch_logcumsumexp Logcumsumexp
torch_logdet Logdet
torch_logical_and Logical_and
torch_logical_not Logical_not
torch_logical_or Logical_or
torch_logical_xor Logical_xor
torch_logit Logit
torch_logspace Logspace
torch_logsumexp Logsumexp
torch_long Torch data types
torch_lstsq Lstsq
torch_lt Lt
torch_lu LU
torch_lu_solve Lu_solve
torch_lu_unpack Lu_unpack
torch_manual_seed Sets the seed for generating random numbers.
torch_masked_select Masked_select
torch_matmul Matmul
torch_matrix_exp Matrix_exp
torch_matrix_power Matrix_power
torch_matrix_rank Matrix_rank
torch_max Max
torch_maximum Maximum
torch_mean Mean
torch_median Median
torch_memory_format Memory format
torch_meshgrid Meshgrid
torch_min Min
torch_minimum Minimum
torch_mm Mm
torch_mode Mode
torch_movedim Movedim
torch_mul Mul
torch_multinomial Multinomial
torch_multiply Multiply
torch_mv Mv
torch_mvlgamma Mvlgamma
torch_nanquantile Nanquantile
torch_nansum Nansum
torch_narrow Narrow
torch_ne Ne
torch_neg Neg
torch_negative Negative
torch_nextafter Nextafter
torch_nonzero Nonzero
torch_norm Norm
torch_normal Normal
torch_not_equal Not_equal
torch_ones Ones
torch_ones_like Ones_like
torch_orgqr Orgqr
torch_ormqr Ormqr
torch_outer Outer
torch_pdist Pdist
torch_per_channel_affine Creates the corresponding Scheme object
torch_per_channel_symmetric Creates the corresponding Scheme object
torch_per_tensor_affine Creates the corresponding Scheme object
torch_per_tensor_symmetric Creates the corresponding Scheme object
torch_pinverse Pinverse
torch_pixel_shuffle Pixel_shuffle
torch_poisson Poisson
torch_polar Polar
torch_polygamma Polygamma
torch_pow Pow
torch_preserve_format Memory format
torch_prod Prod
torch_promote_types Promote_types
torch_qint32 Torch data types
torch_qint8 Torch data types
torch_qr Qr
torch_qscheme Creates the corresponding Scheme object
torch_quantile Quantile
torch_quantize_per_channel Quantize_per_channel
torch_quantize_per_tensor Quantize_per_tensor
torch_quint8 Torch data types
torch_rad2deg Rad2deg
torch_rand Rand
torch_randint Randint
torch_randint_like Randint_like
torch_randn Randn
torch_randn_like Randn_like
torch_randperm Randperm
torch_rand_like Rand_like
torch_range Range
torch_real Real
torch_reciprocal Reciprocal
torch_reduction Creates the reduction objet
torch_reduction_mean Creates the reduction objet
torch_reduction_none Creates the reduction objet
torch_reduction_sum Creates the reduction objet
torch_relu Relu
torch_relu_ Relu_
torch_remainder Remainder
torch_renorm Renorm
torch_repeat_interleave Repeat_interleave
torch_reshape Reshape
torch_result_type Result_type
torch_roll Roll
torch_rot90 Rot90
torch_round Round
torch_rrelu_ Rrelu_
torch_rsqrt Rsqrt
torch_save Saves an object to a disk file.
torch_scalar_tensor Scalar tensor
torch_searchsorted Searchsorted
torch_selu Selu
torch_selu_ Selu_
torch_serialize Serialize a torch object returning a raw object
torch_set_default_dtype Gets and sets the default floating point dtype.
torch_set_num_interop_threads Number of threads
torch_set_num_threads Number of threads
torch_set_rng_state RNG state management
torch_sgn Sgn
torch_short Torch data types
torch_sigmoid Sigmoid
torch_sign Sign
torch_signbit Signbit
torch_sin Sin
torch_sinh Sinh
torch_slogdet Slogdet
torch_sort Sort
torch_sparse_coo Creates the corresponding layout
torch_sparse_coo_tensor Sparse_coo_tensor
torch_split Split
torch_sqrt Sqrt
torch_square Square
torch_squeeze Squeeze
torch_stack Stack
torch_std Std
torch_std_mean Std_mean
torch_stft Stft
torch_strided Creates the corresponding layout
torch_sub Sub
torch_subtract Subtract
torch_sum Sum
torch_svd Svd
torch_t T
torch_take Take
torch_tan Tan
torch_tanh Tanh
torch_tensor Converts R objects to a torch tensor
torch_tensordot Tensordot
torch_tensor_from_buffer Creates a tensor from a buffer of memory
torch_threshold_ Threshold_
torch_topk Topk
torch_trace Trace
torch_transpose Transpose
torch_trapz Trapz
torch_triangular_solve Triangular_solve
torch_tril Tril
torch_tril_indices Tril_indices
torch_triu Triu
torch_triu_indices Triu_indices
torch_true_divide TRUE_divide
torch_trunc Trunc
torch_uint8 Torch data types
torch_unbind Unbind
torch_unique_consecutive Unique_consecutive
torch_unsafe_chunk Unsafe_chunk
torch_unsafe_split Unsafe_split
torch_unsqueeze Unsqueeze
torch_vander Vander
torch_var Var
torch_var_mean Var_mean
torch_vdot Vdot
torch_view_as_complex View_as_complex
torch_view_as_real View_as_real
torch_vstack Vstack
torch_where Where
torch_zeros Zeros
torch_zeros_like Zeros_like

-- U --

unset_autocast Autocast context manager

-- W --

with_autocast Autocast context manager
with_detect_anomaly Context-manager that enable anomaly detection for the autograd engine.
with_device Device contexts
with_enable_grad Enable grad
with_no_grad Temporarily modify gradient recording.
with_torch_manual_seed Sets the seed for generating random numbers.