linalg_cholesky {torch} | R Documentation |
Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.
Description
Letting \mathbb{K}
be \mathbb{R}
or \mathbb{C}
,
the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix
A \in \mathbb{K}^{n \times n}
is defined as
Usage
linalg_cholesky(A)
Arguments
A |
(Tensor): tensor of shape |
Details
Math could not be displayed. Please visit the package website.
where L
is a lower triangular matrix and
L^{H}
is the conjugate transpose when L
is complex, and the
transpose when L
is real-valued.
Supports input of float, double, cfloat and cdouble dtypes.
Also supports batches of matrices, and if A
is a batch of matrices then
the output has the same batch dimensions.
See Also
-
linalg_cholesky_ex()
for a version of this operation that skips the (slow) error checking by default and instead returns the debug information. This makes it a faster way to check if a matrix is positive-definite.linalg_eigh()
for a different decomposition of a Hermitian matrix. The eigenvalue decomposition gives more information about the matrix but it slower to compute than the Cholesky decomposition.
Other linalg:
linalg_cholesky_ex()
,
linalg_det()
,
linalg_eigh()
,
linalg_eigvalsh()
,
linalg_eigvals()
,
linalg_eig()
,
linalg_householder_product()
,
linalg_inv_ex()
,
linalg_inv()
,
linalg_lstsq()
,
linalg_matrix_norm()
,
linalg_matrix_power()
,
linalg_matrix_rank()
,
linalg_multi_dot()
,
linalg_norm()
,
linalg_pinv()
,
linalg_qr()
,
linalg_slogdet()
,
linalg_solve_triangular()
,
linalg_solve()
,
linalg_svdvals()
,
linalg_svd()
,
linalg_tensorinv()
,
linalg_tensorsolve()
,
linalg_vector_norm()
Examples
if (torch_is_installed()) {
a <- torch_eye(10)
linalg_cholesky(a)
}