nn_embedding {torch} | R Documentation |
Embedding module
Description
A simple lookup table that stores embeddings of a fixed dictionary and size. This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings.
Usage
nn_embedding(
num_embeddings,
embedding_dim,
padding_idx = NULL,
max_norm = NULL,
norm_type = 2,
scale_grad_by_freq = FALSE,
sparse = FALSE,
.weight = NULL
)
Arguments
num_embeddings |
(int): size of the dictionary of embeddings |
embedding_dim |
(int): the size of each embedding vector |
padding_idx |
(int, optional): If given, pads the output with the embedding vector at |
max_norm |
(float, optional): If given, each embedding vector with norm larger than |
norm_type |
(float, optional): The p of the p-norm to compute for the |
scale_grad_by_freq |
(boolean, optional): If given, this will scale gradients by the inverse of frequency of
the words in the mini-batch. Default |
sparse |
(bool, optional): If |
.weight |
(Tensor) embeddings weights (in case you want to set it manually) See Notes for more details regarding sparse gradients. |
Attributes
weight (Tensor): the learnable weights of the module of shape (num_embeddings, embedding_dim) initialized from
\mathcal{N}(0, 1)
Shape
Input:
(*)
, LongTensor of arbitrary shape containing the indices to extractOutput:
(*, H)
, where*
is the input shape andH=\mbox{embedding\_dim}
Note
Keep in mind that only a limited number of optimizers support
sparse gradients: currently it's optim.SGD
(CUDA
and CPU
),
optim.SparseAdam
(CUDA
and CPU
) and optim.Adagrad
(CPU
)
With padding_idx
set, the embedding vector at
padding_idx
is initialized to all zeros. However, note that this
vector can be modified afterwards, e.g., using a customized
initialization method, and thus changing the vector used to pad the
output. The gradient for this vector from nn_embedding
is always zero.
Examples
if (torch_is_installed()) {
# an Embedding module containing 10 tensors of size 3
embedding <- nn_embedding(10, 3)
# a batch of 2 samples of 4 indices each
input <- torch_tensor(rbind(c(1, 2, 4, 5), c(4, 3, 2, 9)), dtype = torch_long())
embedding(input)
# example with padding_idx
embedding <- nn_embedding(10, 3, padding_idx = 1)
input <- torch_tensor(matrix(c(1, 3, 1, 6), nrow = 1), dtype = torch_long())
embedding(input)
}