nn_conv3d {torch}R Documentation

Conv3D module

Description

Applies a 3D convolution over an input signal composed of several input planes. In the simplest case, the output value of the layer with input size (N, C_{in}, D, H, W) and output (N, C_{out}, D_{out}, H_{out}, W_{out}) can be precisely described as:

Usage

nn_conv3d(
  in_channels,
  out_channels,
  kernel_size,
  stride = 1,
  padding = 0,
  dilation = 1,
  groups = 1,
  bias = TRUE,
  padding_mode = "zeros"
)

Arguments

in_channels

(int): Number of channels in the input image

out_channels

(int): Number of channels produced by the convolution

kernel_size

(int or tuple): Size of the convolving kernel

stride

(int or tuple, optional): Stride of the convolution. Default: 1

padding

(int, tuple or str, optional): padding added to all six sides of the input. Default: 0

dilation

(int or tuple, optional): Spacing between kernel elements. Default: 1

groups

(int, optional): Number of blocked connections from input channels to output channels. Default: 1

bias

(bool, optional): If TRUE, adds a learnable bias to the output. Default: TRUE

padding_mode

(string, optional): 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Details

out(N_i, C_{out_j}) = bias(C_{out_j}) + \sum_{k = 0}^{C_{in} - 1} weight(C_{out_j}, k) \star input(N_i, k)

where \star is the valid 3D cross-correlation operator

The parameters kernel_size, stride, padding, dilation can either be:

Shape

Attributes

Note

Depending of the size of your kernel, several (of the last) columns of the input might be lost, because it is a valid cross-correlation, and not a full cross-correlation. It is up to the user to add proper padding.

When groups == in_channels and out_channels == K * in_channels, where K is a positive integer, this operation is also termed in literature as depthwise convolution. In other words, for an input of size (N, C_{in}, D_{in}, H_{in}, W_{in}), a depthwise convolution with a depthwise multiplier K, can be constructed by arguments (in\_channels=C_{in}, out\_channels=C_{in} \times K, ..., groups=C_{in}).

In some circumstances when using the CUDA backend with CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting torch.backends.cudnn.deterministic = TRUE. Please see the notes on :doc:⁠/notes/randomness⁠ for background.

Examples

if (torch_is_installed()) {
# With square kernels and equal stride
m <- nn_conv3d(16, 33, 3, stride = 2)
# non-square kernels and unequal stride and with padding
m <- nn_conv3d(16, 33, c(3, 5, 2), stride = c(2, 1, 1), padding = c(4, 2, 0))
input <- torch_randn(20, 16, 10, 50, 100)
output <- m(input)
}

[Package torch version 0.12.0 Index]