nn_gru {torch}R Documentation

Applies a multi-layer gated recurrent unit (GRU) RNN to an input sequence.

Description

For each element in the input sequence, each layer computes the following function:

Usage

nn_gru(
  input_size,
  hidden_size,
  num_layers = 1,
  bias = TRUE,
  batch_first = FALSE,
  dropout = 0,
  bidirectional = FALSE,
  ...
)

Arguments

input_size

The number of expected features in the input x

hidden_size

The number of features in the hidden state h

num_layers

Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two GRUs together to form a ⁠stacked GRU⁠, with the second GRU taking in outputs of the first GRU and computing the final results. Default: 1

bias

If FALSE, then the layer does not use bias weights b_ih and b_hh. Default: TRUE

batch_first

If TRUE, then the input and output tensors are provided as (batch, seq, feature). Default: FALSE

dropout

If non-zero, introduces a Dropout layer on the outputs of each GRU layer except the last layer, with dropout probability equal to dropout. Default: 0

bidirectional

If TRUE, becomes a bidirectional GRU. Default: FALSE

...

currently unused.

Details

\begin{array}{ll} r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\ z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\ n_t = \tanh(W_{in} x_t + b_{in} + r_t (W_{hn} h_{(t-1)}+ b_{hn})) \\ h_t = (1 - z_t) n_t + z_t h_{(t-1)} \end{array}

where h_t is the hidden state at time t, x_t is the input at time t, h_{(t-1)} is the hidden state of the previous layer at time t-1 or the initial hidden state at time 0, and r_t, z_t, n_t are the reset, update, and new gates, respectively. \sigma is the sigmoid function.

Inputs

Inputs: input, h_0

Outputs

Outputs: output, h_n

Attributes

Note

All the weights and biases are initialized from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{1}{\mbox{hidden\_size}}

Examples

if (torch_is_installed()) {

rnn <- nn_gru(10, 20, 2)
input <- torch_randn(5, 3, 10)
h0 <- torch_randn(2, 3, 20)
output <- rnn(input, h0)
}

[Package torch version 0.13.0 Index]