torch_matmul {torch} | R Documentation |
Matmul
Description
Matmul
Usage
torch_matmul(self, other)
Arguments
self |
(Tensor) the first tensor to be multiplied |
other |
(Tensor) the second tensor to be multiplied |
matmul(input, other, out=NULL) -> Tensor
Matrix product of two tensors.
The behavior depends on the dimensionality of the tensors as follows:
If both tensors are 1-dimensional, the dot product (scalar) is returned.
If both arguments are 2-dimensional, the matrix-matrix product is returned.
If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.
If the first argument is 2-dimensional and the second argument is 1-dimensional, the matrix-vector product is returned.
If both arguments are at least 1-dimensional and at least one argument is N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the batched matrix multiply and removed after. If the second argument is 1-dimensional, a 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. The non-matrix (i.e. batch) dimensions are broadcasted (and thus must be broadcastable). For example, if
input
is a(j \times 1 \times n \times m)
tensor andother
is a(k \times m \times p)
tensor,out
will be an(j \times k \times n \times p)
tensor.
Note
The 1-dimensional dot product version of this function does not support an `out` parameter.
Examples
if (torch_is_installed()) {
# vector x vector
tensor1 = torch_randn(c(3))
tensor2 = torch_randn(c(3))
torch_matmul(tensor1, tensor2)
# matrix x vector
tensor1 = torch_randn(c(3, 4))
tensor2 = torch_randn(c(4))
torch_matmul(tensor1, tensor2)
# batched matrix x broadcasted vector
tensor1 = torch_randn(c(10, 3, 4))
tensor2 = torch_randn(c(4))
torch_matmul(tensor1, tensor2)
# batched matrix x batched matrix
tensor1 = torch_randn(c(10, 3, 4))
tensor2 = torch_randn(c(10, 4, 5))
torch_matmul(tensor1, tensor2)
# batched matrix x broadcasted matrix
tensor1 = torch_randn(c(10, 3, 4))
tensor2 = torch_randn(c(4, 5))
torch_matmul(tensor1, tensor2)
}