nn_avg_pool1d {torch} | R Documentation |
Applies a 1D average pooling over an input signal composed of several input planes.
Description
In the simplest case, the output value of the layer with input size (N, C, L)
,
output (N, C, L_{out})
and kernel_size
k
can be precisely described as:
Usage
nn_avg_pool1d(
kernel_size,
stride = NULL,
padding = 0,
ceil_mode = FALSE,
count_include_pad = TRUE
)
Arguments
kernel_size |
the size of the window |
stride |
the stride of the window. Default value is |
padding |
implicit zero padding to be added on both sides |
ceil_mode |
when TRUE, will use |
count_include_pad |
when TRUE, will include the zero-padding in the averaging calculation |
Details
\mbox{out}(N_i, C_j, l) = \frac{1}{k} \sum_{m=0}^{k-1}
\mbox{input}(N_i, C_j, \mbox{stride} \times l + m)
If padding
is non-zero, then the input is implicitly zero-padded on both sides
for padding
number of points.
The parameters kernel_size
, stride
, padding
can each be
an int
or a one-element tuple.
Shape
Input:
(N, C, L_{in})
Output:
(N, C, L_{out})
, where
L_{out} = \left\lfloor \frac{L_{in} +
2 \times \mbox{padding} - \mbox{kernel\_size}}{\mbox{stride}} + 1\right\rfloor
Examples
if (torch_is_installed()) {
# pool with window of size=3, stride=2
m <- nn_avg_pool1d(3, stride = 2)
m(torch_randn(1, 1, 8))
}