| nn_avg_pool1d {torch} | R Documentation |
Applies a 1D average pooling over an input signal composed of several input planes.
Description
In the simplest case, the output value of the layer with input size (N, C, L),
output (N, C, L_{out}) and kernel_size k
can be precisely described as:
Usage
nn_avg_pool1d(
kernel_size,
stride = NULL,
padding = 0,
ceil_mode = FALSE,
count_include_pad = TRUE
)
Arguments
kernel_size |
the size of the window |
stride |
the stride of the window. Default value is |
padding |
implicit zero padding to be added on both sides |
ceil_mode |
when TRUE, will use |
count_include_pad |
when TRUE, will include the zero-padding in the averaging calculation |
Details
\mbox{out}(N_i, C_j, l) = \frac{1}{k} \sum_{m=0}^{k-1}
\mbox{input}(N_i, C_j, \mbox{stride} \times l + m)
If padding is non-zero, then the input is implicitly zero-padded on both sides
for padding number of points.
The parameters kernel_size, stride, padding can each be
an int or a one-element tuple.
Shape
Input:
(N, C, L_{in})Output:
(N, C, L_{out}), where
L_{out} = \left\lfloor \frac{L_{in} +
2 \times \mbox{padding} - \mbox{kernel\_size}}{\mbox{stride}} + 1\right\rfloor
Examples
if (torch_is_installed()) {
# pool with window of size=3, stride=2
m <- nn_avg_pool1d(3, stride = 2)
m(torch_randn(1, 1, 8))
}