| linalg_eigvalsh {torch} | R Documentation |
Computes the eigenvalues of a complex Hermitian or real symmetric matrix.
Description
Letting \mathbb{K} be \mathbb{R} or \mathbb{C},
the eigenvalues of a complex Hermitian or real symmetric matrix A \in \mathbb{K}^{n \times n}
are defined as the roots (counted with multiplicity) of the polynomial p of degree n given by
Usage
linalg_eigvalsh(A, UPLO = "L")
Arguments
A |
(Tensor): tensor of shape |
UPLO |
('L', 'U', optional): controls whether to use the upper or lower triangular part
of |
Details
Math could not be displayed. Please visit the package website.
where \mathrm{I}_n is the n-dimensional identity matrix.
The eigenvalues of a real symmetric or complex Hermitian matrix are always real.
Supports input of float, double, cfloat and cdouble dtypes.
Also supports batches of matrices, and if A is a batch of matrices then
the output has the same batch dimensions.
The eigenvalues are returned in ascending order.
A is assumed to be Hermitian (resp. symmetric), but this is not checked internally, instead:
If
UPLO\= 'L'(default), only the lower triangular part of the matrix is used in the computation.If
UPLO\= 'U', only the upper triangular part of the matrix is used.
Value
A real-valued tensor cointaining the eigenvalues even when A is complex.
The eigenvalues are returned in ascending order.
See Also
-
linalg_eigh()computes the full eigenvalue decomposition.
Other linalg:
linalg_cholesky_ex(),
linalg_cholesky(),
linalg_det(),
linalg_eigh(),
linalg_eigvals(),
linalg_eig(),
linalg_householder_product(),
linalg_inv_ex(),
linalg_inv(),
linalg_lstsq(),
linalg_matrix_norm(),
linalg_matrix_power(),
linalg_matrix_rank(),
linalg_multi_dot(),
linalg_norm(),
linalg_pinv(),
linalg_qr(),
linalg_slogdet(),
linalg_solve_triangular(),
linalg_solve(),
linalg_svdvals(),
linalg_svd(),
linalg_tensorinv(),
linalg_tensorsolve(),
linalg_vector_norm()
Examples
if (torch_is_installed()) {
a <- torch_randn(2, 2)
linalg_eigvalsh(a)
}