torch_conv_transpose2d {torch}R Documentation

Conv_transpose2d

Description

Conv_transpose2d

Usage

torch_conv_transpose2d(
  input,
  weight,
  bias = list(),
  stride = 1L,
  padding = 0L,
  output_padding = 0L,
  groups = 1L,
  dilation = 1L
)

Arguments

input

input tensor of shape (\mbox{minibatch} , \mbox{in\_channels} , iH , iW)

weight

filters of shape (\mbox{in\_channels} , \frac{\mbox{out\_channels}}{\mbox{groups}} , kH , kW)

bias

optional bias of shape (\mbox{out\_channels}). Default: NULL

stride

the stride of the convolving kernel. Can be a single number or a tuple ⁠(sH, sW)⁠. Default: 1

padding

dilation * (kernel_size - 1) - padding zero-padding will be added to both sides of each dimension in the input. Can be a single number or a tuple ⁠(padH, padW)⁠. Default: 0

output_padding

additional size added to one side of each dimension in the output shape. Can be a single number or a tuple ⁠(out_padH, out_padW)⁠. Default: 0

groups

split input into groups, \mbox{in\_channels} should be divisible by the number of groups. Default: 1

dilation

the spacing between kernel elements. Can be a single number or a tuple ⁠(dH, dW)⁠. Default: 1

conv_transpose2d(input, weight, bias=NULL, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor

Applies a 2D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution".

See nn_conv_transpose2d() for details and output shape.

Examples

if (torch_is_installed()) {

# With square kernels and equal stride
inputs = torch_randn(c(1, 4, 5, 5))
weights = torch_randn(c(4, 8, 3, 3))
nnf_conv_transpose2d(inputs, weights, padding=1)
}

[Package torch version 0.13.0 Index]