nn_avg_pool3d {torch} | R Documentation |
Applies a 3D average pooling over an input signal composed of several input
planes.
Description
In the simplest case, the output value of the layer with input size (N,C,D,H,W)
,
output (N,C,Dout,Hout,Wout)
and kernel_size
(kD,kH,kW)
can be precisely described as:
Usage
nn_avg_pool3d(
kernel_size,
stride = NULL,
padding = 0,
ceil_mode = FALSE,
count_include_pad = TRUE,
divisor_override = NULL
)
Arguments
kernel_size |
the size of the window
|
stride |
the stride of the window. Default value is kernel_size
|
padding |
implicit zero padding to be added on all three sides
|
ceil_mode |
when TRUE, will use ceil instead of floor to compute the output shape
|
count_include_pad |
when TRUE, will include the zero-padding in the averaging calculation
|
divisor_override |
if specified, it will be used as divisor, otherwise kernel_size will be used
|
Details
\mboxout(Ni,Cj,d,h,w)=∑k=0kD−1∑m=0kH−1∑n=0kW−1kD×kH×kW\mboxinput(Ni,Cj,\mboxstride[0]×d+k,\mboxstride[1]×h+m,\mboxstride[2]×w+n)
If padding
is non-zero, then the input is implicitly zero-padded on all three sides
for padding
number of points.
The parameters kernel_size
, stride
can either be:
a single int
– in which case the same value is used for the depth, height and width dimension
a tuple
of three ints – in which case, the first int
is used for the depth dimension,
the second int
for the height dimension and the third int
for the width dimension
Shape
Input: (N,C,Din,Hin,Win)
Output: (N,C,Dout,Hout,Wout)
, where
Dout=⌊\mboxstride[0]Din+2×\mboxpadding[0]−\mboxkernel_size[0]+1⌋
Hout=⌊\mboxstride[1]Hin+2×\mboxpadding[1]−\mboxkernel_size[1]+1⌋
Wout=⌊\mboxstride[2]Win+2×\mboxpadding[2]−\mboxkernel_size[2]+1⌋
Examples
if (torch_is_installed()) {
# pool of square window of size=3, stride=2
m <- nn_avg_pool3d(3, stride = 2)
# pool of non-square window
m <- nn_avg_pool3d(c(3, 2, 2), stride = c(2, 1, 2))
input <- torch_randn(20, 16, 50, 44, 31)
output <- m(input)
}
[Package
torch version 0.13.0
Index]