| nn_linear {torch} | R Documentation | 
Linear module
Description
Applies a linear transformation to the incoming data: y = xA^T + b
Usage
nn_linear(in_features, out_features, bias = TRUE)
Arguments
| in_features | size of each input sample | 
| out_features | size of each output sample | 
| bias | If set to  | 
Shape
- Input: - (N, *, H_in)where- *means any number of additional dimensions and- H_in = in_features.
- Output: - (N, *, H_out)where all but the last dimension are the same shape as the input and :math:- H_out = out_features.
Attributes
- weight: the learnable weights of the module of shape - (out_features, in_features). The values are initialized from- U(-\sqrt{k}, \sqrt{k})s, where- k = \frac{1}{\mbox{in\_features}}
- bias: the learnable bias of the module of shape - (\mbox{out\_features}). If- biasis- TRUE, the values are initialized from- \mathcal{U}(-\sqrt{k}, \sqrt{k})where- k = \frac{1}{\mbox{in\_features}}
Examples
if (torch_is_installed()) {
m <- nn_linear(20, 30)
input <- torch_randn(128, 20)
output <- m(input)
print(output$size())
}