nn_linear {torch} | R Documentation |
Linear module
Description
Applies a linear transformation to the incoming data: y = xA^T + b
Usage
nn_linear(in_features, out_features, bias = TRUE)
Arguments
in_features |
size of each input sample |
out_features |
size of each output sample |
bias |
If set to |
Shape
Input:
(N, *, H_in)
where*
means any number of additional dimensions andH_in = in_features
.Output:
(N, *, H_out)
where all but the last dimension are the same shape as the input and :math:H_out = out_features
.
Attributes
weight: the learnable weights of the module of shape
(out_features, in_features)
. The values are initialized fromU(-\sqrt{k}, \sqrt{k})
s, wherek = \frac{1}{\mbox{in\_features}}
bias: the learnable bias of the module of shape
(\mbox{out\_features})
. Ifbias
isTRUE
, the values are initialized from\mathcal{U}(-\sqrt{k}, \sqrt{k})
wherek = \frac{1}{\mbox{in\_features}}
Examples
if (torch_is_installed()) {
m <- nn_linear(20, 30)
input <- torch_randn(128, 20)
output <- m(input)
print(output$size())
}