Population (and Individual) Optimal Experimental Design


[Up] [Top]

Documentation for package ‘PopED’ version 0.6.0

Help Pages

PopED-package PopED - *Pop*ulation (and individual) optimal *E*xperimental *D*esign.
a_line_search Optimize using line search
build_sfg Build PopED parameter function from a model function
calc_ofv_and_fim Calculate the Fisher Information Matrix (FIM) and the OFV(FIM) for either point values or parameters or distributions.
cell Create a cell array (a matrix of lists)
create.poped.database Create a PopED database
create_design Create design variables for a full description of a design.
create_design_space Create design variables and a design space for a full description of an optimization problem.
design_summary Display a summary of output from poped_db
efficiency Compute efficiency.
evaluate.e.ofv.fim Evaluate the expectation of the Fisher Information Matrix (FIM) and the expectation of the OFV(FIM).
evaluate.fim Evaluate the Fisher Information Matrix (FIM)
evaluate_design Evaluate a design
evaluate_fim_map Compute the Bayesian Fisher information matrix
evaluate_power Power of a design to estimate a parameter.
feps.add RUV model: Additive .
feps.add.prop RUV model: Additive and Proportional.
feps.prop RUV model: Proportional.
ff.PK.1.comp.oral.md.CL Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL.
ff.PK.1.comp.oral.md.KE Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using KE.
ff.PK.1.comp.oral.sd.CL Structural model: one-compartment, oral absorption, single bolus dose, parameterized using CL.
ff.PK.1.comp.oral.sd.KE Structural model: one-compartment, oral absorption, single bolus dose, parameterized using KE.
ff.PKPD.1.comp.oral.md.CL.imax Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL driving an inhibitory IMAX model with a direct effect.
ff.PKPD.1.comp.sd.CL.emax Structural model: one-compartment, single bolus IV dose, parameterized using CL driving an EMAX model with a direct effect.
get_rse Compute the expected parameter relative standard errors
LEDoptim Optimization function for D-family, E-family and Laplace approximated ED designs
mc_mean Compute the monte-carlo mean of a function
median_hilow_poped Wrap summary functions from Hmisc and ggplot to work with stat_summary in ggplot
model_prediction Model predictions
ofv_criterion Normalize an objective function by the size of the FIM matrix
ofv_fim Evaluate a criterion of the Fisher Information Matrix (FIM)
ones Create a matrix of ones
optimize_groupsize Title Optimize the proportion of individuals in the design groups
optimize_n_eff Translate efficiency to number of subjects
optimize_n_rse Optimize the number of subjects based on desired uncertainty of a parameter.
optim_ARS Optimize a function using adaptive random search.
optim_LS Optimize a function using a line search algorithm.
pargen Parameter simulation
plot_efficiency_of_windows Plot the efficiency of windows
plot_model_prediction Plot model predictions
PopED PopED - *Pop*ulation (and individual) optimal *E*xperimental *D*esign.
poped PopED - *Pop*ulation (and individual) optimal *E*xperimental *D*esign.
poped_gui Run the graphical interface for PopED
poped_optim Optimize a design defined in a PopED database
poped_optimize Retired optimization module for PopED
RS_opt Optimize the objective function using an adaptive random search algorithm for D-family and E-family designs.
shrinkage Predict shrinkage of empirical Bayes estimates (EBEs) in a population model
size Function written to match MATLAB's size function
start_parallel Start parallel computational processes
summary.poped_optim Display a summary of output from poped_optim
tic Timer function (as in MATLAB)
toc Timer function (as in MATLAB)
zeros Create a matrix of zeros.