PopED-package |
PopED - *Pop*ulation (and individual) optimal *E*xperimental *D*esign. |
a_line_search |
Optimize using line search |
build_sfg |
Build PopED parameter function from a model function |
calc_ofv_and_fim |
Calculate the Fisher Information Matrix (FIM) and the OFV(FIM) for either point values or parameters or distributions. |
cell |
Create a cell array (a matrix of lists) |
create.poped.database |
Create a PopED database |
create_design |
Create design variables for a full description of a design. |
create_design_space |
Create design variables and a design space for a full description of an optimization problem. |
design_summary |
Display a summary of output from poped_db |
efficiency |
Compute efficiency. |
evaluate.e.ofv.fim |
Evaluate the expectation of the Fisher Information Matrix (FIM) and the expectation of the OFV(FIM). |
evaluate.fim |
Evaluate the Fisher Information Matrix (FIM) |
evaluate_design |
Evaluate a design |
evaluate_fim_map |
Compute the Bayesian Fisher information matrix |
evaluate_power |
Power of a design to estimate a parameter. |
feps.add |
RUV model: Additive . |
feps.add.prop |
RUV model: Additive and Proportional. |
feps.prop |
RUV model: Proportional. |
ff.PK.1.comp.oral.md.CL |
Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL. |
ff.PK.1.comp.oral.md.KE |
Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using KE. |
ff.PK.1.comp.oral.sd.CL |
Structural model: one-compartment, oral absorption, single bolus dose, parameterized using CL. |
ff.PK.1.comp.oral.sd.KE |
Structural model: one-compartment, oral absorption, single bolus dose, parameterized using KE. |
ff.PKPD.1.comp.oral.md.CL.imax |
Structural model: one-compartment, oral absorption, multiple bolus dose, parameterized using CL driving an inhibitory IMAX model with a direct effect. |
ff.PKPD.1.comp.sd.CL.emax |
Structural model: one-compartment, single bolus IV dose, parameterized using CL driving an EMAX model with a direct effect. |
get_rse |
Compute the expected parameter relative standard errors |
LEDoptim |
Optimization function for D-family, E-family and Laplace approximated ED designs |
mc_mean |
Compute the monte-carlo mean of a function |
median_hilow_poped |
Wrap summary functions from Hmisc and ggplot to work with stat_summary in ggplot |
model_prediction |
Model predictions |
ofv_criterion |
Normalize an objective function by the size of the FIM matrix |
ofv_fim |
Evaluate a criterion of the Fisher Information Matrix (FIM) |
ones |
Create a matrix of ones |
optimize_groupsize |
Title Optimize the proportion of individuals in the design groups |
optimize_n_eff |
Translate efficiency to number of subjects |
optimize_n_rse |
Optimize the number of subjects based on desired uncertainty of a parameter. |
optim_ARS |
Optimize a function using adaptive random search. |
optim_LS |
Optimize a function using a line search algorithm. |
pargen |
Parameter simulation |
plot_efficiency_of_windows |
Plot the efficiency of windows |
plot_model_prediction |
Plot model predictions |
PopED |
PopED - *Pop*ulation (and individual) optimal *E*xperimental *D*esign. |
poped |
PopED - *Pop*ulation (and individual) optimal *E*xperimental *D*esign. |
poped_gui |
Run the graphical interface for PopED |
poped_optim |
Optimize a design defined in a PopED database |
poped_optimize |
Retired optimization module for PopED |
RS_opt |
Optimize the objective function using an adaptive random search algorithm for D-family and E-family designs. |
shrinkage |
Predict shrinkage of empirical Bayes estimates (EBEs) in a population model |
size |
Function written to match MATLAB's size function |
start_parallel |
Start parallel computational processes |
summary.poped_optim |
Display a summary of output from poped_optim |
tic |
Timer function (as in MATLAB) |
toc |
Timer function (as in MATLAB) |
zeros |
Create a matrix of zeros. |