RS_opt {PopED} | R Documentation |
Optimize the objective function using an adaptive random search algorithm for D-family and E-family designs.
Description
Optimize the objective function using an adaptive random search algorithm.
Optimization can be performed for both D-family and E-family designs.
The function works for both discrete and continuous optimization variables.
This function takes information from the PopED database supplied as an argument.
The PopED database supplies information about the the model, parameters, design and methods to use.
Some of the arguments coming from the PopED database can be overwritten;
by default these arguments are NULL
in the
function, if they are supplied then they are used instead of the arguments from the PopED database.
Usage
RS_opt(
poped.db,
ni = NULL,
xt = NULL,
model_switch = NULL,
x = NULL,
a = NULL,
bpopdescr = NULL,
ddescr = NULL,
maxxt = NULL,
minxt = NULL,
maxa = NULL,
mina = NULL,
fmf = 0,
dmf = 0,
trflag = TRUE,
opt_xt = poped.db$settings$optsw[2],
opt_a = poped.db$settings$optsw[4],
opt_x = poped.db$settings$optsw[3],
cfaxt = poped.db$settings$cfaxt,
cfaa = poped.db$settings$cfaa,
rsit = poped.db$settings$rsit,
rsit_output = poped.db$settings$rsit_output,
fim.calc.type = poped.db$settings$iFIMCalculationType,
approx_type = poped.db$settings$iApproximationMethod,
iter = NULL,
d_switch = poped.db$settings$d_switch,
use_laplace = poped.db$settings$iEDCalculationType,
laplace.fim = FALSE,
header_flag = TRUE,
footer_flag = TRUE,
out_file = NULL,
compute_inv = TRUE,
...
)
Arguments
poped.db |
A PopED database. |
ni |
A vector of the number of samples in each group. |
xt |
A matrix of sample times. Each row is a vector of sample times for a group. |
model_switch |
A matrix that is the same size as xt, specifying which model each sample belongs to. |
x |
A matrix for the discrete design variables. Each row is a group. |
a |
A matrix of covariates. Each row is a group. |
bpopdescr |
Matrix defining the fixed effects, per row (row number = parameter_number) we should have:
|
ddescr |
Matrix defining the diagonals of the IIV (same logic as for
the |
maxxt |
Matrix or single value defining the maximum value for each xt sample. If a single value is supplied then all xt values are given the same maximum value. |
minxt |
Matrix or single value defining the minimum value for each xt sample. If a single value is supplied then all xt values are given the same minimum value |
maxa |
Vector defining the max value for each covariate. If a single value is supplied then all a values are given the same max value |
mina |
Vector defining the min value for each covariate. If a single value is supplied then all a values are given the same max value |
fmf |
The initial value of the FIM. If set to zero then it is computed. |
dmf |
The initial OFV. If set to zero then it is computed. |
trflag |
Should the optimization be output to the screen and to a file? |
opt_xt |
Should the sample times be optimized? |
opt_a |
Should the continuous design variables be optimized? |
opt_x |
Should the discrete design variables be optimized? |
cfaxt |
First step factor for sample times |
cfaa |
Stochastic Gradient search first step factor for covariates |
rsit |
Number of Random search iterations |
rsit_output |
Number of iterations in random search between screen output |
fim.calc.type |
The method used for calculating the FIM. Potential values:
|
approx_type |
Approximation method for model, 0=FO, 1=FOCE, 2=FOCEI, 3=FOI. |
iter |
The number of iterations entered into the |
d_switch |
D-family design (1) or ED-family design (0) (with or without parameter uncertainty) |
use_laplace |
Should the Laplace method be used in calculating the expectation of the OFV? |
laplace.fim |
Should an E(FIM) be calculated when computing the Laplace approximated E(OFV). Typically the FIM does not need to be computed and, if desired, this calculation is done using the standard MC integration technique, so can be slow. |
header_flag |
Should the header text be printed out? |
footer_flag |
Should the footer text be printed out? |
out_file |
Which file should the output be directed to? A string, a file handle using
|
compute_inv |
should the inverse of the FIM be used to compute expected RSE values? Often not needed except for diagnostic purposes. |
... |
arguments passed to |
References
M. Foracchia, A.C. Hooker, P. Vicini and A. Ruggeri, "PopED, a software fir optimal experimental design in population kinetics", Computer Methods and Programs in Biomedicine, 74, 2004.
J. Nyberg, S. Ueckert, E.A. Stroemberg, S. Hennig, M.O. Karlsson and A.C. Hooker, "PopED: An extended, parallelized, nonlinear mixed effects models optimal design tool", Computer Methods and Programs in Biomedicine, 108, 2012.
See Also
Other Optimize:
Doptim()
,
LEDoptim()
,
a_line_search()
,
bfgsb_min()
,
calc_autofocus()
,
calc_ofv_and_grad()
,
mfea()
,
optim_ARS()
,
optim_LS()
,
poped_optim_1()
,
poped_optim_2()
,
poped_optim_3()
,
poped_optimize()
,
poped_optim()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization
## with parameter uncertainty)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samoples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
# Adding 10% log-normal Uncertainty to fixed effects (not Favail)
bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1)
bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution
bpop_vals,
ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value
bpop_vals_ed_ln["Favail",] <- c(0,1,0)
bpop_vals_ed_ln
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=bpop_vals_ed_ln,
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(0.01,0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0,
maxxt=120,
a=70,
mina=0,
maxa=100)
############# END ###################
## Create PopED database
## (warfarin model for optimization
## with parameter uncertainty)
#####################################
# Just a few iterations, optimize on DOSE and sample times using the full FIM
out_1 <- RS_opt(poped.db,opt_xt=1,opt_a=1,rsit=3,fim.calc.type=0, out_file = "")
## Not run:
RS_opt(poped.db)
RS_opt(poped.db,opt_xt=TRUE,rsit=100,compute_inv=F)
RS_opt(poped.db,opt_xt=TRUE,rsit=20,d_switch=0)
RS_opt(poped.db,opt_xt=TRUE,rsit=10,d_switch=0,use_laplace=T)
RS_opt(poped.db,opt_xt=TRUE,rsit=10,d_switch=0,use_laplace=T,laplace.fim=T)
## Different headers and footers of output
RS_opt(poped.db,opt_xt=TRUE,rsit=10,out_file="foo.txt")
output <- RS_opt(poped.db,opt_xt=TRUE,rsit=100,trflag=FALSE)
RS_opt(poped.db,opt_xt=TRUE,rsit=10,out_file="")
RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE)
RS_opt(poped.db,opt_xt=TRUE,rsit=10,footer_flag=FALSE)
RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE,footer_flag=FALSE)
RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE,footer_flag=FALSE,out_file="foo.txt")
RS_opt(poped.db,opt_xt=TRUE,rsit=10,header_flag=FALSE,footer_flag=FALSE,out_file="")
## End(Not run)