ofv_criterion {PopED} | R Documentation |
Normalize an objective function by the size of the FIM matrix
Description
Compute a normalized OFV based on the size of the FIM matrix. This value can then be used in
efficiency calculations. This is NOT the OFV used in optimization, see ofv_fim
.
Usage
ofv_criterion(
ofv_f,
num_parameters,
poped.db,
ofv_calc_type = poped.db$settings$ofv_calc_type
)
Arguments
ofv_f |
An objective function |
num_parameters |
The number of parameters to use for normalization |
poped.db |
a poped database |
ofv_calc_type |
OFV calculation type for FIM
|
Value
The specified criterion value.
See Also
Other FIM:
LinMatrixH()
,
LinMatrixLH()
,
LinMatrixL_occ()
,
calc_ofv_and_fim()
,
ed_laplace_ofv()
,
ed_mftot()
,
efficiency()
,
evaluate.e.ofv.fim()
,
evaluate.fim()
,
gradf_eps()
,
mf3()
,
mf7()
,
mftot()
,
ofv_fim()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01,add=0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=c(DOSE=70),
mina=c(DOSE=0.01),
maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
## evaluate initial design
FIM <- evaluate.fim(poped.db) # new name for function needed
FIM
get_rse(FIM,poped.db)
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=1),
length(get_unfixed_params(poped.db)[["all"]]),
poped.db,
ofv_calc_type=1) # det(FIM)
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=2),
length(get_unfixed_params(poped.db)[["all"]]),
poped.db,
ofv_calc_type=2)
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=4),
length(get_unfixed_params(poped.db)[["all"]]),
poped.db,
ofv_calc_type=4)
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=6),
length(get_unfixed_params(poped.db)[["all"]]),
poped.db,
ofv_calc_type=6)
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=7),
length(get_unfixed_params(poped.db)[["all"]]),
poped.db,
ofv_calc_type=7)