| ofv_criterion {PopED} | R Documentation | 
Normalize an objective function by the size of the FIM matrix
Description
Compute a normalized OFV based on the size of the FIM matrix.  This value can then be used in 
efficiency calculations. This is NOT the OFV used in optimization, see ofv_fim.
Usage
ofv_criterion(
  ofv_f,
  num_parameters,
  poped.db,
  ofv_calc_type = poped.db$settings$ofv_calc_type
)
Arguments
| ofv_f | An objective function | 
| num_parameters | The number of parameters to use for normalization | 
| poped.db | a poped database | 
| ofv_calc_type | OFV calculation type for FIM 
 | 
Value
The specified criterion value.
See Also
Other FIM: 
LinMatrixH(),
LinMatrixLH(),
LinMatrixL_occ(),
calc_ofv_and_fim(),
ed_laplace_ofv(),
ed_mftot(),
efficiency(),
evaluate.e.ofv.fim(),
evaluate.fim(),
gradf_eps(),
mf3(),
mf7(),
mftot(),
ofv_fim()
Examples
library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation 
##   for population pharmacokinetics-pharmacodynamics studies", 
##   Br. J. Clin. Pharm., 2014. 
## Optimization using an additive + proportional reidual error  
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function 
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
  parameters=c(CL=bpop[1]*exp(b[1]),
               V=bpop[2]*exp(b[2]),
               KA=bpop[3]*exp(b[3]),
               Favail=bpop[4],
               DOSE=a[1])
  return(parameters) 
}
## -- Define initial design  and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
                                  fg_fun=sfg,
                                  fError_fun=feps.add.prop,
                                  bpop=c(CL=0.15, V=8, KA=1.0, Favail=1), 
                                  notfixed_bpop=c(1,1,1,0),
                                  d=c(CL=0.07, V=0.02, KA=0.6), 
                                  sigma=c(prop=0.01,add=0.25),
                                  groupsize=32,
                                  xt=c( 0.5,1,2,6,24,36,72,120),
                                  minxt=0.01,
                                  maxxt=120,
                                  a=c(DOSE=70),
                                  mina=c(DOSE=0.01),
                                  maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
## evaluate initial design 
FIM <- evaluate.fim(poped.db) # new name for function needed
FIM
get_rse(FIM,poped.db)
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=1),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=1) # det(FIM)
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=2),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=2) 
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=4),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=4)
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=6),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=6)
ofv_criterion(ofv_fim(FIM,poped.db,ofv_calc_type=7),
              length(get_unfixed_params(poped.db)[["all"]]),
              poped.db,
              ofv_calc_type=7)