plot_model_prediction {PopED} | R Documentation |
Plot model predictions
Description
Function plots model predictions for the typical value in the population, individual predictions and data predictions.
Usage
plot_model_prediction(
poped.db,
model_num_points = 100,
groupsize_sim = 100,
separate.groups = F,
sample.times = T,
sample.times.IPRED = F,
sample.times.DV = F,
PRED = T,
IPRED = F,
IPRED.lines = F,
IPRED.lines.pctls = F,
alpha.IPRED.lines = 0.1,
alpha.IPRED = 0.3,
sample.times.size = 4,
DV = F,
alpha.DV = 0.3,
DV.lines = F,
DV.points = F,
alpha.DV.lines = 0.3,
alpha.DV.points = 0.3,
sample.times.DV.points = F,
sample.times.DV.lines = F,
alpha.sample.times.DV.points = 0.3,
alpha.sample.times.DV.lines = 0.3,
y_lab = "Model Predictions",
facet_scales = "fixed",
facet_label_names = T,
model.names = NULL,
DV.mean.sd = FALSE,
PI = FALSE,
PI_alpha = 0.3,
...
)
Arguments
poped.db |
A PopED database. |
model_num_points |
How many extra observation rows should be created in the data frame for each group or individual
per model. If used then the points are placed evenly between |
groupsize_sim |
How many individuals per group should be simulated when DV=TRUE or IPRED=TRUE to create prediction intervals? |
separate.groups |
Should there be separate plots for each group. |
sample.times |
Should sample times be shown on the plots. |
sample.times.IPRED |
Should sample times be shown based on the IPRED y-values. |
sample.times.DV |
Should sample times be shown based on the DV y-values. |
PRED |
Should a PRED line be drawn. |
IPRED |
Should we simulate individual predictions? |
IPRED.lines |
Should IPRED lines be drawn? |
IPRED.lines.pctls |
Should lines be drawn at the chosen percentiles of the IPRED values? |
alpha.IPRED.lines |
What should the transparency for the IPRED.lines be? |
alpha.IPRED |
What should the transparency of the IPRED CI? |
sample.times.size |
What should the size of the sample.times be? |
DV |
should we simulate observations? |
alpha.DV |
What should the transparency of the DV CI? |
DV.lines |
Should DV lines be drawn? |
DV.points |
Should DV points be drawn? |
alpha.DV.lines |
What should the transparency for the DV.lines be? |
alpha.DV.points |
What should the transparency for the DV.points be? |
sample.times.DV.points |
TRUE or FALSE. |
sample.times.DV.lines |
TRUE or FALSE. |
alpha.sample.times.DV.points |
What should the transparency for the sample.times.DV.points be? |
alpha.sample.times.DV.lines |
What should the transparency for the sample.times.DV.lines be? |
y_lab |
The label of the y-axis. |
facet_scales |
Can be "free", "fixed", "free_x" or "free_y" |
facet_label_names |
TRUE or FALSE |
model.names |
A vector of names of the response model/s (the length of the vector should be equal to the number of response models). It is Null by default. |
DV.mean.sd |
Plot the mean and standard deviation of simulated observations. |
PI |
Plot prediction intervals for the expected data given the model.
Predictions are based on first-order approximations to
the model variance and a normality assumption of that variance. As such these computations are
more approximate than using |
PI_alpha |
The transparency of the PI. |
... |
Additional arguments passed to the |
Value
A ggplot object. If you would like to further edit this plot don't
forget to load the ggplot2 library using library(ggplot2)
.
See Also
Other evaluate_design:
evaluate.fim()
,
evaluate_design()
,
evaluate_power()
,
get_rse()
,
model_prediction()
,
plot_efficiency_of_windows()
Other Simulation:
model_prediction()
,
plot_efficiency_of_windows()
Other Graphics:
plot_efficiency_of_windows()
Examples
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
library(PopED)
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.md.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.sd.CL",
fg_file="sfg",
fError_file="feps.prop",
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=0.01,
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0,
maxxt=120,
a=70)
## create plot of model without variability
plot_model_prediction(poped.db)
## create plot of model with variability by simulating from OMEGA and SIGMA
plot_model_prediction(poped.db,IPRED=TRUE,DV=TRUE)
## create plot of model with variability by
## computing the expected variance (using an FO approximation)
## and then computing a prediction interval
## based on an assumption of normality
## computation is faster but less accurate
## compared to using DV=TRUE (and groupsize_sim = 500)
plot_model_prediction(poped.db,PI=TRUE)
##-- Model: One comp first order absorption + inhibitory imax
## -- works for both mutiple and single dosing
ff <- function(model_switch,xt,parameters,poped.db){
with(as.list(parameters),{
y=xt
MS <- model_switch
# PK model
N = floor(xt/TAU)+1
CONC=(DOSE*Favail/V)*(KA/(KA - CL/V)) *
(exp(-CL/V * (xt - (N - 1) * TAU)) * (1 - exp(-N * CL/V * TAU))/(1 - exp(-CL/V * TAU)) -
exp(-KA * (xt - (N - 1) * TAU)) * (1 - exp(-N * KA * TAU))/(1 - exp(-KA * TAU)))
# PD model
EFF = E0*(1 - CONC*IMAX/(IC50 + CONC))
y[MS==1] = CONC[MS==1]
y[MS==2] = EFF[MS==2]
return(list( y= y,poped.db=poped.db))
})
}
## -- parameter definition function
sfg <- function(x,a,bpop,b,bocc){
parameters=c( V=bpop[1]*exp(b[1]),
KA=bpop[2]*exp(b[2]),
CL=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1],
TAU = a[2],
E0=bpop[5]*exp(b[4]),
IMAX=bpop[6],
IC50=bpop[7])
return( parameters )
}
## -- Residual Error function
feps <- function(model_switch,xt,parameters,epsi,poped.db){
returnArgs <- ff(model_switch,xt,parameters,poped.db)
y <- returnArgs[[1]]
poped.db <- returnArgs[[2]]
MS <- model_switch
pk.dv <- y*(1+epsi[,1])+epsi[,2]
pd.dv <- y*(1+epsi[,3])+epsi[,4]
y[MS==1] = pk.dv[MS==1]
y[MS==2] = pd.dv[MS==2]
return(list( y= y,poped.db =poped.db ))
}
poped.db <-
create.poped.database(
ff_fun="ff",
fError_fun="feps",
fg_fun="sfg",
groupsize=20,
m=3,
bpop=c(V=72.8,KA=0.25,CL=3.75,Favail=0.9,
E0=1120,IMAX=0.807,IC50=0.0993),
notfixed_bpop=c(1,1,1,0,1,1,1),
d=c(V=0.09,KA=0.09,CL=0.25^2,E0=0.09),
sigma=c(0.04,5e-6,0.09,100),
notfixed_sigma=c(0,0,0,0),
xt=c( 1,2,8,240,240,1,2,8,240,240),
minxt=c(0,0,0,240,240,0,0,0,240,240),
maxxt=c(10,10,10,248,248,10,10,10,248,248),
discrete_xt = list(0:248),
G_xt=c(1,2,3,4,5,1,2,3,4,5),
bUseGrouped_xt=1,
model_switch=c(1,1,1,1,1,2,2,2,2,2),
a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24),c(DOSE=0, TAU=24)),
maxa=c(DOSE=200,TAU=40),
mina=c(DOSE=0,TAU=2),
ourzero=0)
## create plot of model and design
plot_model_prediction(poped.db,facet_scales="free",
model.names = c("PK","PD"))
## create plot of model with variability by
## computing the expected variance (using an FO approximation)
## and then computing a prediction interval
## based on an assumption of normality
## computation is faster but less accurate
## compared to using DV=TRUE (and groupsize_sim = 500)
plot_model_prediction(poped.db,facet_scales="free",
model.names = c("PK","PD"),
PI=TRUE,
separate.groups = TRUE)