optimize_n_eff {PopED} | R Documentation |
Translate efficiency to number of subjects
Description
optimize HOW MANY n there should be to achieve efficiency=1 compared to a reference OFV
Usage
optimize_n_eff(poped.db, ofv_ref, norm_group_fim = NULL, ...)
Arguments
poped.db |
A PopED database. |
ofv_ref |
A reference OFV value to compare to. |
norm_group_fim |
The FIM per individual in each design group. If |
... |
Arguments passed to |
Value
The number of individuals needed.
Examples
# 2 design groups with either early or late samples
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
},
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(0.01,0.25),
xt=list(c(1,2,3),c(4,5,20,120)),
groupsize=50,
minxt=0.01,
maxxt=120,
a=70,
mina=0.01,
maxa=100)
plot_model_prediction(poped.db)
evaluate_design(poped.db)
# what are the optimal proportions of
# individuals in the two groups in the study?
(n_opt <- optimize_groupsize(poped.db))
# How many individuals in the original design are needed to achieve an
# efficiency of 1 compared to the optimized design with n=100?
optimize_n_eff(poped.db,
ofv_ref=n_opt$opt_ofv_with_n)
[Package PopED version 0.6.0 Index]